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PRE'SAGE

The computer program (CURVES) described in this Memorandum was
developed in support of estimating-relationship research e. orts being
conducted in the RAND Cost Analysis Department. This program represe'nts

Ill

a compilation of various parts of existing programs written by the
author, with modifications being included where necessary. The author
makes no claim to originality or to efficiency of operation with re-
gard to the program. The main purpose of writing such a program was

&I

to have available for cost analysts an easily workable, user-oriented,curve-fitting computer program--especially adapted to handle th iath-

ematical functions most commionly used in the development of estima~ting

relationships,

I
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SUMMARY

This Memorandum describes a k'RTRAN-IV curve-fitting CO(mput

progra that has been developed within the i2ND Cost Analysis Depart-

ment. lhe p-ogram makes least-squares determinations of the param-

eters of any of five mathematical functions selected by the user,

given a set of observations on the dependent and independent variables

of interest. The functions available in the program are the line,
parabola, power, asymptotic-power, and exponential. Up to three in-

dependent variables may be used for the line and power functions.

Also, the Y-intercept may be specified for the line, parabola, or

asymptotic-power function.

A discussion of the characteristics of the functions is presented

in Section I, including an examination of those nonlinear functions

that require special methods for solution. Also included is a brief

discussion of the statistics used in the pregram. Specific details

on the operation of the program are presented in Soction II. This

section also treats the options available to the user. Program out-

puts are discussed in Section III. For the benefit of the reader,

sample outputs from two .,ns are shown.

Mathematical considerations relating to nonlinear-least-squares

solutions are treated in Appendiccs A and B. A listing of the FORTRAN-

IV computer program is presented in Appendix C.
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I. INTRODUCTION

PROGRAM DESCRIPTION

A FORTRAN-IV curve-fitting computer program (CURVES) has been

written by the author that makes least-squares determinations of the

parameters of any of five types of functions, given a set of observa-

tions on the dependent and independent variables of interest. These

functions are commonly used in the derivation of cost analysis esti-

mating relationships, and are: (a) line, (b) parabola, (c) power,

(d) asymptotic-power, and (e) exponential. They are described in de-

tail in subsequent parts of this section. Standard statistics re-
lating to "goodness-of-fit" measures are also calculated in the pro-

gram. No predictive statistics are included, however, because of the

difficulty of obtaining such statistics for the nonlinear functions--

the latter three above. Consequently, the prog-am is intended essen-

tially for curve-fitting.

The CURVES program can handle up to 200 data points for each re-

gression and is so structured that if a set of data cards contains

data for several separate regressions, that set needs to be entered

only once. This obviates the need for duplicating such input data

decks for each regression run. A variable-format procedure is provided

the user so that data may be entered in any order on the input cards.K Also, an option is provided to allow the user to specify the Y-intercept

value (regression constant) for the line, parabola, and asymptotic-

IJ power functions.

The program is written completely in FORTRAN-IV, using A4 formats

for all alphanumeric information. No matrix-inversion or other sub-

programs are used. All solutions are made through either standard,

algebraic methods for the linear and parabolic cases or through iter-

ative methods f-or the other cases. Consequent'y, the program should

be readily adaptable to other computer systems.

*
In this Memorandum, a linear function is defined as oue which

is linear with respect to all of its parameters. Under this definition,
the parabola is consi4ered to be a linear function.
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FM!CTION TYPES

The functions available in this program wurc .hos..:n principally

cn the basis of their application to tLL derivation )f cost analysis

estimating relationships. They are:

I. Lne (containiniDto three indepndent vwriabcs".

Y A + B (XI),

Y; = A (Xi) C • (X , ,

Y-intercept

Y A + B (Xl) + C (X2) + , (X3 (A) may be

spec if ied.

2. Parabola

Y = A + B (XI) + C - (Xl) 2 .

3. Power (containing up to three independent variables)

B
Y A (XI)

Y A (Xl)B .(x2 C)

Y A (Xl) B  (X2)C • (X3) D ,

4. Asytotiz-Power

B Y-intercept (C)
Y = [A • (X) + C may be specified.

5. Exponential

= [A 4 B - (Xi)]

As in FORTRAN notation in the program, the independent variables

art, itpresented by Xl, X2, and X3, respectively- When only on,. ind-

pendent var lab .IIs considered, XI is us od Also, a.; t xplained later,
only pusitive values aie considered for all variables.
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where

Y = dependent variao-le,

Xi, X2, X3 - independent variables,

A, B, C, D - parameters to be determined by least-squares methods,

e = constant .2.71828.

FUNCTION CHARACTERIS TICS

Examples of some of the types of curves that can be obtained from

the five functions are shown in Fig. I for a one-independent-variable

case.

Line

The linear form is the most simple of the forms treated her-.. Its

characteristics are well knov,n and, in the opinion of the author, need

no further elaboration. The user has the option of using up to three

independent variables and also the option of specifying the Y-intercept

(A).

Parabola

Sometimes the parabolic function is used to represent points that

lie along a curve having a Y-intercept (including zero). However, one

must be aware that since this function is actually a polynomial of de-

gree 2, its curve always has a maximum or minimum point (vertex). Th1is

means that the effect of the independent variable (XI) on the dependent

variable (Y) is reversed once tnis point is traversed. Again, the user

has the option of specifying the Y-intercept (A).

Power

The power function is one of the more common functions used in

cost analysis work. A plot of its logarithmic counterpart, the log-

linear form, is known as the "learning curve" or "improvement

cost curve." However, for reasons discussed later, the power, rather

chan the logarithmic, form is used in this program. For this function,



L Parabola
Y 1 Y AB XI- -X 2

VVertex

Por Asymptotic -power
Y A*X18 Y-,AX',

B>1

B <Q asymptote Y C

Goes through oriain for B >0

OrExIlpential -ribeCs
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the user has the option of using up to three independent variables.

For positive exponent B, thi,, curve always passes through the or-igin,

as shown in the figure. Thereforc, it should never be used where a

positive Y-interc.ept is desired or logically required. For negative

B, the curve is undefined at XI = 0 and is a declining curve, approach-

ing asymptotically the Xl-axis as Xl becomes large.

AsyMptotic-Power

An examination of the fourth function, the asymptotic-power, shows

that the curve has a horizontal asymptote of Y = C for negative B.

That is, as X1 becomes large, the first term (A Xi B ) approaches zero,

and hence the value of Y approaches that of the constant term C. Con-

sequently, there is a level-off effect associated with this curve for

negative B. This function may thus be used to represent points that

lie along a curve either increasing or decreasing to a horizontai

asymptote. Like the power curve, this curve is undefined at X1 = 0

for neg_-ive B. For positive B, there is a Y-intercept equal to C.

As XI becomes large, the first term (A • X1 B ) ultimately becomes large

compared with C, and therefore Y approaches a pure power function

(A X1B ) in this region of Xl.

A plot of the asymptotic-power function on log-log paper produces

a curved line at low values of XI that approaches either a horizontal

(B < 0) or inclined (B > 0) asymptote at high values of XI. Where a

positive Y-intercept is desired, the user may specify a value for the

constant term C.

Exponent ia 1

The last form, the exponential, is used to represent points that

lie along a curve having a positive Y-intercept (e A). The curve may

be either a rising (B > 0) or falling curve (B < O)--the falling curve

approaching asymptotically the Xl-axis. The logarithmic counterpart

of the exponential function is the somilog function, wich produces a

straight line on semilog paper. That is, In Y is a linear function
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of XI. As was the case with the power function, for reasons discussed

later, the exponential, rather than the semilogarithmic, form is re-

tained for this program.

NONLINEAR-LEAST-SqUARES SOLUTIONS

It can be shown mathematically that the least-squares solutions

of the parameters of any function are always exact and unique provided

that the function is lineat with respect to all of its parameters.

Therefore, for this program, the line and parabola produce exact and

unique solutions. (The term exact is used to refer to a solution that

can be obtained algebraically.) However, the latter three functions

are not all linear in terms of their parameters. Thus, their solutions

are not exact and, as shown later, may not represent absolute minimums

of the sum of squares of the Y residuals. They must be obtained in

some other way--usually through some type of iterative procedure. (The

general principles of such procedures and other mathematical consider-

ations relating to the solutions of nonlinear-least-squares equations

are presented in AppenJix A.)

Foi the power and exponential functions, a modified Gauss-Newton

method is used, in which initial estimates are obtained from the log-

arithmic solutions (which are exact) and then correctiou., guaranteed

to produce convergence to a solution, are applied to those initial es-

timates. fliis procedue is repeated until the absolute change in the

value of each parameter becomes equal to, or less than, some predeter-
-8 -

mined value (10 in the program).

The solution of the asymptotic-power function is based on another

type of iterative procedu because there appears to be no easy way to

*i

All logarithms discussed hereit are natural logarithms (base e)
and are represented by In.

This procedure is described in detail in RM-4879-PR by C. A.
Graver and H. E. Boren, Jr., Multivariate Logarithmic t,,d Exponential

Regression Models, The RAND Corporation, July 1967. It may be noted

that conceptually, the solutions for the power and exponential func-

tions are each different than for their logarithmic counterparts (see

Appendix A). Also, the term "exponent ial" in he above referenced RM

is equivalent to ti, term. power" in this Memorandum. I
kI
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obtain the initial guesses that are requtred for the modified Gauss-

Newton method. ,iis procedure is treated in Appendix B.

STATISTICAL CONS IDERATIONS

Because of the difficulty of calculating and applying predictive-

type statistics for the rnonlinear functions, it was decided to use only

"goodness of fit" statistics in the program. Consequently, this pro-

gram should be regarded as essentially a curve-fitting program with

only those statistics being used that relate to how well the curve fits

that particular set of data. Also, it '-hould be noted that the statis-

tics may not have exactly the same meaning for the power, asymptotic-

power, and exponential functions as for the line and parabola because

of the nonlinear chazacteristics of the former three. In general,

statistics for nonlinear functions should be used with care. For ex-

ample, unless there is proof to the contrary, the F statistic for a

nonlinear function probably should not be compared with the F table.

Such statistics should generally be used only qualitatively--not

quantitatively--until a thorough investigation is made into the appli-

cation of such statistics to nonlinear functions.

The principal reason for omitting the logarithmic forms in this

program is that it is very difficult to compare their fits statisti-

cally with those of the nonlogarithmic forms (see Appendix A). As a

res lt, no logarithmic cirv#-. nre .sod ian the statistical results

relating to the five functions used in this program can be compared

more directly. However, since the iterative solutions for the power

and exponential functions require that their logarithmic solutions

be determined for the initial estimates, these solutions are also

printed in the output (without any related statistics) for the benefit

of the user.

A sumary of the statistical au-atioos i PL4_LLed in Se:tion

III, following the discussion on program outputs,

The use of predictive statistics for the power function is treat-

ed in RM-4879 (see previous footnote). However, that program requires
many additional subroutines, which in the opinion of the author, would
make the CURVES program prohibitively large, slow in operation, and

restricted to 50 or less data points.
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II. INPUT PROCEDURES

The flow of operations within the program is depicted in Fig. 2.

The program is so structured that many sets of data may be entered, in

which each set ( 200 data points) constitutes a run. As soon -, each

set is read in. the program operates on that set before proceeding to

the next set of input data. Each data set may be entered on a separate

deck of cards. On the other hand, several or all of the data sets,

if space on the cards permits, may be entered on one deck of cards,

thus effecting considerable savings in the use of cards and in the

effort of duplicating a deck of cards containing data for several

runs. A variable format procedure is used, allowing much flexibility

in the format of the input data.

Listed below are tho types of cards that must be entered for the

first run.

I. Title card

2. Order card Need to be entered only once if input data

for all runs are to be entered in same
3. Format card format

4. Scale card Used only if data are to be scaled or if

Y-intercept is to be specified.

5. Data cards

6. Blank card

7. End card Optionp!

TITLE CARD

The title card must b- entered for each run. In addition to the

title (alphanumeric), this card also contains other information about

the run. If the two cards relating to the variable-format procedures

(order and format cards) are to be read, a "I" is entered in Col. I of

the title card. For th, first run, a "I" must bu entered. For subse-

quent runs involving different input formats, iz still must be entered.

However, if data for all subsequent runs are to be entered on separate
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START___ _

[ SUBROUTINE INPUT

READS INPUT DATA FROM CARDSSET PAGE NUMBER TO 1.I OR UTILITY DISK AND, IF SO
WPAGE 1 DESIGNATED, WRITES DATA ONTO

UTILITY DISK FOR REREADING

SET RUN COUNTER TO 1. [ DURING THE NEXT RUN.

NRUN 1 I_______________

SUBROUTINE CHECK

PRINT MAIN HEADING CHECKS INPUT DATA FOR ERRORS

AND PAGE NUMBER O N AND, IF SO DESIGNATED,
FIRST PAGE. SCALES DATA.

STEP PAGE NUMBER BY I SUBROUTINE SUMS
[PAGE W IAGE + I ORDERS THE DATA FROM LOW TO

HIGH VALUES OF Y IF INDICATED;
OBTAINS VARIOUS SUMS AND

CLEAR COMMON. MEANS OF THE INPUT DATA; AND
A (SET VALUES OF MOST OBTAINS THE STANDARD

G WVARIABLES IN COMMON DEVIATIONS OF THE INPUT DATA.
TO ZERO)

SET SUBROUTINE.55CHKVAU
INDICATOR TO I. Asymtotic-power DFEIGATIORN

IND =1 EINTR

SUBROUTINE READ SUBROUTINE PkiNT 3 (Power)

READS TITLE CARD A D, PRINTS APPROPRIATE
IF SO DESIGNATED, ORD[R SUBHEADING F OR3
CARD, VARIABLE 4FCNAAT EQUATION BEING
CARD, AND SCALE CARD . USED . E u t o s u.d i r g o

I. LINE

C.KY + A + S (XI) )intercept
VARIABLE-FORMAT q CAL = A + (XI + C (X2) 4 X) A may be

DEINAO AFT IN B"l)*C(2)D(3 cified

CARD2. PARABOLA
Y A B (XI) + C (X I )I

$9 3. POWER
Y =A (X1)' (X2 )c (X3)D

4. Initercept
4.ASYMPTOTIC -POWER IC may be

5. EXPONENTIAL
y= ~e(A-0I ( X )]

Fig. 2--Flow of Operations



-10-

Y Line 5)fmpfoti c -power

SUBROUTINE LINE SUBROUTINE i SYM

SELECTS APPROPRIATE SET OF DETERMINES L AST-SQUARES
NORMAL EQUATIONS FOR SOLUTION OF ASYMPTOTIC-
LEAST-SQUARES SOLUTION - POWER FUNCTION.
OF EQUATION OF A LINE .o

CONTAINING UP TO THREE
INDEPENDENT VARIABLES.

(INTERCEPT A MAY BE SPECIFIED.)

2

Parabola

SUBROUTINE PARA SUBROUTINE SOLVE

SELECTS APPRC('RIATE SET OF SOLVES SIMUtTANEOUSLY
NORMAL EQUATIONS FOR LfP TO FOUR LINEAR

LEAST- SQUARES SOLUTION EQUATIONS.
OF EQUATION OF A PARABOLA. - -

(INTFRCEPT A MAY BE SPECIFIED.)

I SUBROUTINE EXPO

FIRST. DETERMINES LEAST-
SQ0ARES SOLUTION OF SEMI-

LOGARITHMIC EQ UATION.
THEN USLS THAT SOLUTION A'
STARTING POINT FOR ItERAI'
SOLUTION OF EXPONENTIAL

SUBRO.TINE POWR FUNC TION.

FIRST, SELFCTS APPROPRIATE SUT.

OF NORMAL EQUATIONS FCR4
LEAST-SQUARES SOtUTION OF "-----"

LOGARITHMIC-LINEAR EQUATION. AIBROUTINE ITER
THEN USES THAT "OtUTION AS DETERMINES LEAST SUARES
STARTING POINT FOR ITERATIVE SOLUTION OF POWEL AND

SOLUTION OF POAER FUNC'ION. EXPONENTIAL I.)'LATIONS
SOLUTION 1S gAkED ON

MOO IF IT) 6 ALUSS- NEWTON

ME THO).

Fig. 2--Flov of Operat tons (Cont.)
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SUBROUTINE5 IAT
,ALCULATES STANDARD
STATISTICS RELATING TO

GOODNESS OF FIT."

SUBROUTINE OUT]
PRINTS SOLUTION AND
STATISTICS RELATING TO
GO000NESS OF FIT."

SJRW.UiINE QUT2

PRINTS LISTING Of INPUT
DATA, CALCULATED Y

VALUES, Y RESIDUALS, AND
PtRCENT Y DEVIATIONS.

rSTEP RUN COUNTER}

NRUN NRUN - I

I!AIT PAGE NLUMM.R
TO 1,

PAG I

Fig. 2--Flow of Operations (Gont.)
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decks of card&: using iLhe same format as the first run, then the "1"

only needs to be entered for the first run. Whenever the 1 is not

entered, then the order and format cards are not entered.

If input data representing several runs are entered on one deck

of cards so that for subsequent runs those same cards will, in effect,

be reused, and hence re-read (in different fields), then a "1" is enter-

ed in Col. 2 of the title card for the first set of such data to be

read in. This causes the machine not only to read the first set of

data but to write all of the input data onto a utility disk for re-

reading during subsequent runs. Unless the user selects another util-

ity disk or tape, the program automatically uses utility disk S.SU04

(FORTRAN logical unit 4) for this operation.

For the remaining runs that use the input data from the same deck

of cards, a "2" is entered in Col.2 of each title card for those runs.

This caaxses the machine to read the input data from the utility disk

(instead of from new cards) in accordance with the format instructions

so entered.

Column 3 is used for the function designator. An integer from

"1" through "5" is entered to designate which function is being con-

sidered for that run. The integer designators are as follows:

Integer Function

1 Line
2 Parabola
3 Power
4 Asymptotic-power

5 Exponential

There must be an integer of one of the above values entered in Col.

3 for the first run. If Col. 3 is left blank after the first run,

then the value for the previous run is used. Thus, if the same type

of function is being examined for a series of runs, its designator

needs to be entered only for the first run.

Column 4 is used to designate whether the input data are to be

ordered from low to high values of Y. A value of " ' signifies that

the data are to be ordered. For the first run a blank (zero) signifies

that the data are not to be ordered. However, for subsequent runs a
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blank (zero) signifies to the machine that the value of the order

designator for the preceding run is to be used. Again, this is done

so that if all runs in a series are to be either ordered or unordered,

the order designator will only have to be entered for the first run.

In the case where a zero is desired fur the designator after a "1"

has been entered previously, a "2" must be entered. This in effect

sets the value of the designator to zero.

The scale designator is entered in Col. 5. If any of the data

are to be scaled (using the Scale Card described later), a "1" is

entered in this column. Otherwise it is left blank (zero).

Column 6 is used to designate whether the Y-intercept term for

the line, parabola, or asymptotic-power function is to be specified.

This is done by entering a "1." Otherwise Col. 1 is left blank (zero).

If a "1" is entered in either Cols. 5 or 6, or both, then the scale

card is entered in the order shown previously.

Columns 9 through 72 are reserved for the title. The title may

consist of any alphanumeric symbols.

A sunmmary of the information on the title card is given in Table

1. An example of a title card is shown in Fig. 3, in which a linear

regression is to be made on the input data ("I" in Col. 3). The data

;ire to be ordered with respect to Y ("1" in Col. 4) and are to be

scaled ("l" in Col. 5). The "1" in Col. 1 indicates that the order

and format cards are to be read next.

ORDER CARD

The next card (when used as specified by a "I" in Col. 1 of the

title card) indicates the order (from left to right) in which the data

are located on the data cards. The order (designated by alphanumeric

symbols) is entered in Cols. 1-2, 4-5, 7-8, 10-11, and 13-14. Depend-

ing on the number of independent variables being used and on whether

identifiers are being used, Cols. 7-14 may not be required. The sym-

bols used to show the order are as follows:
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Table 1

SUIOIRY OF INFOATION ON TIT1E CARD

Columns Remarks

A "I" indicates that the order card and format
card are to be read, respectively, following the

title card If blank, no such cards are to be

read. A "I" must be entered for the first run.

2 A "I" indicates that th0 input data cards contain
data for several runs and are to be written onto a
utility J"k (Sysr :9 Unit S.SU04, FORTRAN Logical
lit 4), A "2" indicates that the input data are

to be read from the disk. If blank, the input
data cards for this run are to be read unly once.

3 An integer from "1" to "5 is used to designate
which function is being used. This is done as

follows.

I -- Linear

2 -- Parabolic

3 -- Power
4 -- Asymptotic-power

5 -- Exponential

If blank after the first run, the value for the
preceding run is used.

4 A "1" indicates that the data are to be ordered

from low to high values of Y. For the first run
a blank indicates that the data are not to be
ordered. If blank for subsequpnt runs, the value

for the preceding run is used. A "2" is used for
subsequent runs to restore the designator to zero

when desired.

5 A "1" indicaces that the data are to be scaled.

Otherwise, it is left blank.

6 A "" inuicates that a Y-inte, pt is to be
specified for either the linear, parabolic, or

asymptotic-power case. Otherwise, it is left

blank.
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Tabl1c 1 (Cont.)

SUI4ARY OF INFORMATION ON TITLE CARD

Cclu'trn, Remarks

-7-8 Not used.

9-72 Title for run. May consist of any alphanumeric
symbols.
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Symbol Type .of Data

ID ...... Identifier (alphanumeric) (uptional)
Yl ...... Dependent variable (requireJ) MAy be in any
XI ...... First independent variablt- (r-quired) order from left
X2 ...... Second independent -vdriable (optional) to right.
X3 ...... Third independent v riable (optional)

/

Suppose that a p zf data is to be entered in which values for

the three independent variables and the dependent variable are located

in Cols. 1-12, 13-24, 25-36, and 37-48, respectively. Suppose also

that an identifier (a six--digit integer) is in Cols. 55-60. Then,

"XI," "X2,"! "X3, f Y 1," and "ID" would be entered respectively, in
Cols. 1-2, 4-5, 7-8, 10-11, and 13-14 to show the above order across

the card.

All alphanumeric information is treated in A4 formats in this

program in order to be adaptable to IBM-360 systems. In addition, the
identifiers may be entered in either A4 or 2A4 formats. This is in-
dicated in Col. 16 on the order card by either a "I" (A4) or a "2"

(2A4). If Col. 16 is left blank, after the first run, then the value

for the preceding run is used.

The order card is shown in Fig. 4 for the above example, in whiich
a 2A4 format is to be read for the six-digit identifier. Since the

comotnas separating the symbols are in columns that are not read by the

machine, they may be used for the purpose of clarification.

FORMAr CARD

The format card indicates where the data are located on the data

cards. Again, this card is used only if a "I" is entered in Col. I
of the title card. This card must begin with a left-hand parenthesis

and end with a right-hand parenthesis before , and the infor-

mation within the parentheses must conform to the rules for FORTRAN
formats. Except for the alphanumeric identifiers, all input data

muit be in real-number (floating point) formats. The format card

shown in Fig. 5 would be used for the previous example.
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d2,3O*~ 100 00023 0?100000000 AO 0000 1i 40 1l3 000000000100A j '

2 2 2 2 22 22 22 2 2 22?? 2 222 222222227222 2 2122222?2?2?2222?2?? 22 2?2 2? 22:

3 3 3 33 l 33*3 3 3 33 3 3 133 3 33 33 3303 33 33 3133 3 333 3 33 3 33 3 333 33 33 3 3 31303 33 133

4 44 4 4 4 4 4 4 44 44 4 4 444 4 1j4 A4 4 4 4 4 44 44 44 44444 4 4 1 4 Aq 44 4 41 4 44 44 44 44 44 4

5 555 5 5 55 5 5 S5 s 5 5955555 5 5 5 55959 S 95 5 55 5 5 595 5 5 5 5 s 5 S9 5

565 65 ~526 &6 66555S6 6E 656555 6 6 56~ 6C6 6666666

30~~~~~~~~ I50111010000010111 I1011100011 771 711710771 70111000 171111 1I

04099I9393A A11J99 99190 4 W ,39S2;A.9Q

Fig. 4--Example of order Card

(4F 12 .0 6X# 2A4

I 4 ?42S2S4I2f2 2 2 2'2 2' 2 ? ?, 2 2 ? . 7 4 242'22222 2 2)2U2£U42 2 4142 26222g2i2I2,2,2 2A2t2S21I2L12ZJ242,2.2i2I2 2C2 '4'''' I

1 11 1 I 111 1 111110 1 111011 1 1 111 ;I I IlII I ; 11 11 11 111 I II I101I I 1II II 1

811101 11111 1101011110001b1111q181111 11101111a0e10a0000001111 e480"18 11 01 j

1 3 S q3331 I I 930 q 3592 Sb q 3 q I q 81 949090923 I 885391 131 249 18111 1 04 9

Fig. 5--Example of Format Card
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SCALE CARD

As designated by a "1" in either Cols. 5 or 6 (or both) of the

title 'ard, the scale card is used either if the data are to be scaled,

or if the Y-intercept is to be specified for the linear, parabolic,

or asymptotic-power function.

Data Scaling

The first four sets of two columns each on the scale card are

used for scaling the input dependent and independent variable data

when required. These scale indicators (integers) are located as -ol-

lows.

Column Location of
Variable Scaled Scale Designator

Y (dependent variable) 1-2
Xl (first independect variable) 3-4
X2 (second independent variable) 5-6
X3 (third independent variable) 7-8

An integer (fixed-point) number is used to indicate the number of

places that the decimal is to be moved. A positive number indicates

that the decimal is to be moved to the right as many places as is the

value of the number. A negative number indicates that the decimal is

to be moved to the left as many places as is the absolute value of the

number. For example, suppose f$4ar a "3" is entered in Col. 2 (must be

right-justified). Then each input Y value will have its decimal point

moved three places to he right, e.g., 50.123---o-50123., 0.6127----*

612.7, etc.

Care must be taken to enter all positive integers in the right-

itand column of the two-column set. If, for example, a "3" were enter-

ed in Col. 1 Lnstead of Col. 2, the machine would read the number as

"30" instead of "3." Any scale factor entered applies, of course, to

the entire set of the corresponding variable for that run only. An

example of this card is shown in Fig. 6, in which the first-independent-

variable data (Xl) ai. .o be scaled down by a factor of 10.

Data may also be scaled by using P-formats.
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A~~~~ - 4l 4- 4 *' . 1 ,,'. 4iOI .jt1 .4 . 644A 64 4 4 44 ,;fl.', 1 4 4

I3 3 I I I I ;171 I I lii II IIII I Ii I i III 1 I I 1 1I I I ii I1

3 P3 8 11 08 3 13 333 1313 333333333313113333 13333383333] 3333 1133333 8 '

14 . 4444444 4444 44] . 414.11 '444441144444444444441444 444444114

5 5555555555555555555 S5555555555555555 555

Fig. 6--Example of Scale Card
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Specified Y-Intercept

The specified Y-intercept (regression constant) is entered in

Cols. 11-20. It is entered in real-number form anywhere within these

columns. The implied decimal point location is at the right end of

the field, between Cols. 20 and 21.

DATA CARDS

Each data card must contain at least a pair of values--one for

the dependent variable (Y) and one for the independent variable (XI).

Each data set constituting a run must contain one more data point than

the number of para-eters being solved and may contain up te 200 data

points. The location of the data on the cards must be in exact agree-

ment with the information entered on the order and format cards, or

else the data will not be read properly. The numerical data (dependent

and independent variable values) must be entered as real numbers, and

the identifiers (if used) as alphanumeric data.

If, for any data card, either the Y field or any of the X fields,

that are read, but rnt all, are blank or contain zeros, that card is

skipped. However, if all X-Y fields are blank (zeros), the reading

of input data for the run is terminated at that point (see Blank Card

below).

In conjunction with the above, zero or negative values are not

allowed for the X-Y input data. Another reason for this is that for

the power and asymptotic-power functions involving negative fractlonal

exponents of nr'zetive X values, such expressions are meaningless.

Also, Iogarithms are used in the solutions of the nonlinear functions,

and the use of log arithms restrict the input data to values greater

than zero.

An example' of a data card containing data in the format depicted

in Figs. 4 and 5 Is shown in Fig, 7.

BLANK CARD

Each pack of data cards must always end with a blank Lard. This

card is used to terminate the reading of the input data for a given run.
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II t I467 4 6 7 4 ,

I I ~I' fl I: . I+ . .... t, 1- 1'-

3 3 3333133 1'33 13 33 13 313 1133 3 1 33 1

1J 44 fl4 i414A4ii d4 :It 3 J i 1 4I14 d13 4 IJA4AI3431141d'i::11Hl (

4 4A 4 1 5 t3I A A A 4 A3 I1g. A 1 41

Fig. 7--Example of Data Card
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':ND CARD (OPTIONAL)

The program is so structured that after each set of data is read

in and processed, the machine attempts to read in another set of data.

After the final run when the machine &ttempts to read in another set

of data that does not exist, control is returned to the FORTRAN monitor,

ending the series , f runs. At this point, a state!ent is printed as

follows:

End-of-data encountered on system input file.

In order to provide a positive method of terminating a series of

rutis. this optional method is provided tne utser. If a "q" is entered

in Col. 1 on a card immediatelv following the blank card of the last

set of data (actually the next title card), it will ca, e the prokrim

to Cal' Fxit and terminate the series of runs at that )oln(. If this

is done, Lhe End-of-Data statement will not be printed.

SUMMARY

Figure 8 shows the order of two data decks for a settes of three

runs. In this figure, che second deck of data also contains data for

the third rimi. Hence, it is to te written onto a utility cisk foi re-

readtf : during the third rui-
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Tilrd run 1Data for this runFomtcr

are to be read of disk con-
taining alI data from second Odrcr

deck of uards.)"tecr o

Second run ( Data / end of second

for this run are to /data deck

be read in some /
order and format as
first run. In addition,
tl-e cords are to be

slilce ole also secod anid

c ontain data for Sehidiur

thsetond run

Data points for

/ Blank card at endarut< 00
/ of first data deck

Fird1 run

cal. card - n \~Pa i(r' dL u Tr~ ui
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III. PROGRAM OUTPUTS

Examples of program outputs for the line and power functions

are shown in Figs. 9-12 The particular data shown have no meaning

whatsoever and are presented only for the purpose of displaying the

outputs. Since the headings are rather self-explanatory, and the

statistics have already been discussed in Chapter I, no explanation

of them will be given. It should be emphasized again that the statis-

tics pre;ented may have different meanings with regard to the nonlinear

functions than with the linear functions. They should not be used as

predictors and should be regarded only as indicators of the "goodness

of fit" for that particular data set.

As is shown in Appendix A for the power and exponential functions,

if there is a solution of the parameters lying in the region defined

by

2 •Yci -Yi > O,

where Yci = computed value of Y at each point i,

Yi = observed value of Y at each point i,

then that solution represents an absolute minimum of the sum of squares

of Y residuals and is the only solution in that region. In addition,

it seems reasonable to assume that the above condition should hold for

those functions in order to have a "good" fit. If the above condition

for the region does not hold, a message is printed noting that fact.

For the parabolic function, the X-Y coordinates of the maximum

or minimum point (vertex) are printed. After this point is passed,

the effect of Xl on Y is reversed.

Figure 13 is a listing of the input data for the two runs whose

outputs are shown in Figs. 9-12. The data are in the same format on

the cards as shown in Figs. 4-7. As Fig. 13 shows, the input data

for the second run (power function) are read in the same format as

for the first run. Therefore, the order and format cards are not
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Title card
I II TE JS I RUN I -- LINEAR Order card

14F12.0, 6X, Z 4 J Format carci
- I Scale card

20.192P3 IC. 3456 1 4.2?653 27.941,18 100 4
50.37289 1u.u 20.0 80.09 332 101311

IC5.35467 5.2 1$ 8 I?.16541 lu41.423 1 221Z1
62.17862 18.8888 a. 171054 F9.9267, lC1il
35.25671 42.16541 22,17864 13.60992 1005,15
8C.24561 15.254.11 15.25672 93.40204 1U1414
12. 1548 7 .26751 31.26884 40. 104 1007 17
65. 3821 16.27865 1.27553 84.84002 1) 15
89.46718 1C9.6547 44.?7861 54.51610 I10I00

ICG.C 1O0.C ICO.0 101. ?516q 10,,) 32
121.17625 175.26P71 52.11625 41.097(411 1008B R

2.31658 15.28165 10.98716 19.44080 1C(2tn2
1 C6.26 9 81.27543 1C7.26?84 I 17.C 102Z 21
56.27182 19.26113 41.26511 88.26627 101616
15.267ip 40.15672 t3.l772 24.06789 1cg C 03
79.26182 12.25418 0.26713 14Y.55016 10101C Input data

51.22268 86.12351 24. 16273 14. 1Q608 C0(tn1 I
9 7?.26 173 84.23456 93.25671 111. 35247 102424
o2.24518 L0.27625 17.24561 92.51133 101,419
32.2 615 8.18761 16.27615 51.71624 10090)
38.27615 27.31617 1.28116 40o4056H 1006()6
49.28811 14.11167 54.28811 94.38172 1u2020
44.246P9 48.23418 35.28861 1C4.27262 1i2222
40.19824 15.0 39.22218 71.096A? 101212
117.33922 95. 18293 100.0 1 31.24108 10/626

75.12345 76.111L 88.99112 9C,28862 l0818
I0.C 20.0 101.0 59.0 101111
74.2819? 7.218, 97.22215 138.46141 021-/f8
89.22186 12. 16524 8.01181 122.693r1 1U152"1
64.16253 102. 33 28 114.23477 14 1. 7206 H 102'2 4 i

Blank cord

3 tEST RuN 2 -- P0wER
35.18162 10.26781 16.25673 iiI.20949 21,,0',06

1C2.15672 54.2fI716 40.25611 1510.2135q ,t)"429
78.28719 66.2671t 100.0 661. 12500 201515

102.11628 112.27162 13C.18719 880.20145 ?02(2;
70.21168 108.26152 1Q2.11817 515.55565 201313
43.13425 59.17236 k8.21926 1oo.0 20181A
10.2182i t5.27819 95.11119 60.25169 200101
61.2221P 48.18213 12.23116 5s,0.190 8 201111

LcO.0 106.0 ICO.0 480. 76950 20?2??
120.11234 71.19283 ICS.25172 1138.3t12 r 202525
34.18273 26.18773 5.26174 972.51116 202121
29.12678 8.1627Y 75.25619 115.1M201 200202
20.23457 14.16289 4.25617 ',60.16664 200109
57.19281 102.0 17.26153 1145.54015 20272?
120.11865 90.24133 105.25671 1158.45161 202626
25.14.Stl 34.25671 90.0 143.04087 20301
17.26155 76.25144 10.15782 570.9b34, 0') IC .
65.241 48 110.27816 21.25517 1412. 9';2A2
28.12816 9. 1 826 3.27715 119.628U0 201111
41.15287 118.26132 71.2)518 425.',1155 ICONd8
35.12311 19.23518 17.26153 142.1548. (; ( '

121.271% 55.24351 110.23145 IUCC.58891 ZU2 13
23.156?8 104.28115 19.29115 461.)784F 2q 1 0'U
111.25411 21.18726 76.1623 Hl4.P?9Vr, 201,W)
151.28761 93.21615 178.29911 11/5.6163F 20)24/4
44.21651 85.28716 27. 182I7q 155.1148I 2I'16 le,
71.16251 1 U.18213 145.21168 511.15416 21,212

112.18802 141.23557 25.18892 2t)1C.C1076 2U001C
38.2Q918 21. k8A21 1 .21164 2' 7.14e, 17 2C0,404
P9.26 15 5.27715 4s.231Sq 58' ?m)'%1 ?01414

Blank card

Fig. 13--Listing of Inputs for Two Rims whose

Outputs are Shown in Figs. 9-12
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required for that second run. Also, there is no scale card for the

second run because none of the data are scaled.

A summary of all of the statistics that are used in the CURVES

program is presented in Table 2 in simplified form. One should be

aware that when the Y-intercept is specified, not only are the degrees

of freedom changed, but the curve is no longer forced through the

means of the observed data. Consequently, the statistics will have

different values. In addition, for the linear case with the speci-

fied intercept, the F ratio, which is based on the distribution of the

Y residuals, may have its distribution altered. Therefore, a compar-

ison of its value with tabulated values based on an assumed standard

F distribution may not always be valid. As a result, F ratios for the

specified Y-I'-tercept cases may not always be comparable with those

for unspecified Y-intercept cases. A statement to this effect is

printed in the Summary Table of the output whenever the Y-intercept

is specified.

A listing of the FORTRAN-IV computer program is presented in Ap-

pendix C.

As was noted previously in Section I under Statistical Consider-

ations, F ratios for nonlinear functions may not be valid for compari-
sons with tabulated values.
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Table 2

STATISTICAL EQUATIONS USED IN PROGRAM8

Statistic Equation

Sum of Squares of Y N
Deviations Si (Y - Y ) 2

i-i

where

N - number of data points

Yi a observed Y value at each
point i

Yci po= calculated Y value at each
point i

Standard Error of the Es-
timate of Y (Adjusted) S2 -

where

P number of parameters to be
solwa

Coefficient of Variation
(Percent) S ,,(S' 100

where

V mean of observed Y values

Coefficient of Determination S
(Unadjusted) S 4  1 - N

-2
(Yi "

i-i

Coefficient of Correlation S

(Unadjusted) 5 " 4

Percent Y Deviation t "

100 Y

The symbols used here are not necessarily those used in the pro-
gram.



-33-

Table 2 (Cont.)

STATISTICAL EQUATIONS USED IN PROGRAM

Statistic Equation

Mean of Absolute Percent N
Y Deviations 5

S7  N

Standard Deviation of N
Input Variablesw-2

where

Vi f value of any input vari-
able

V = mean value of input vari-
able V

F Value N

-~~~ 2 t-

S9  S 1 /(N-P)

where

Y - mean of calculated Y
values

Total Degrees of Frr.edom SIO -N-1

Degrees of Freedom About S -N-P
Regression Curve 11

Degrees of Freedom Dk.e to SI2  1S P-
Regress ion
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Appendix A

NONLINEAR -LEAST-SQUARES CONSIDERATIONS

LOARITHMIC AND NONLOGARITHMIC SOLUTI(KS

The usual procedure for making least-squares determinations of

Lte parameters of the power or e :ponential function is to first con-

vert the function into a log-linear (or semilog-linear) function. Onc

then has a logar ithmic linear equation which can be solved direct ly

through ise of the stanuard normal least-squares equations for the

linear case. However, one should be aware that such a solution s net

the same conceptually as the least-squares solution of the funct;vn

before it is conx'erted into its lugarithmi- counterpart. Thi ",ay Ot

seen by considering, for exampe, the power function and it-, ,c, h:. c

form.

Let

B C D
Y-A (Xl) (X2)C - (X3)

and

In Y - In A + B • X1 + C in X2 + D In X3

For a least-squares solution, one is interested in minimizing the

sum ot squares of !he Y residuals (&noted by Q). ,Terefore, for the

power function,

N
- 2

Q " .. ( Yi - wi)  n .,

f-1

and tot the logarithmic function

N

Q' (in Y " In Y ) min.,
,I ci

1-I

Throughout this discus,;ion, Q is use i to represent the stw of
squares ot the Y residuals.
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N

or Q' (in mi2 min.,
i~ci

where N - number of data points,

Y- W observed value of dependent variable at each point i,

Yci - calculated value of dependent variable at each point i.

In the logarithmic case, the sum of squares of the actual dif-

ferences (residuals) between the observed and calculated Y values is

not being minimized--rather the sum of squares of the logarithms of

the ratios of those values is being minimized. Depending on the ob-

served data, Q and Q' may produce significantly different solutions

for the parameters A, B, C, D.

It may also be seen that any statistic based on the sum of squares

of Y residuals, such as the coefficient of correlation, may be mis-

leading if used to compare the logarithmic form with its nonlogarithmic

counterpart. For the logarithmic form, such statistics are in loga-

rithms and hence have different meanings.

The question as to whether, say, the power function or its log-

arithmic form is more appropriate for a set of data is beyond the

scope of this Memorandum. An answer to such a question depends on

many factors including the errors associated with the data and what

criterion is used for a "good fit." For the interested reader, this

question is treated in more detail in RM-4879-PR.

NON-LINEAR SOLUTIONS

It is a necessary condition that the first partial derivatives

of Q with respect to the parameters must be zero in order that Q be

minimized. This is not, unfortunately, a sufficient condition for a

function that is not linear with respect to all of its iarameters.

The reason for this is that if Q could be graphed (in i ilti-dimensional

space) for this type of function, there might be other critical

Graver, Boren, 2p. cit.
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points--such as saddle points or relative maxima or minima points--

where the first partial derivatives would also be zero. A test that

checks for this possibility is the examination of the matrix of second

partial derivatives of Q, which is a generalization of the second-

derivative test for a one-parameter case. If this matrix is positive-

definite for all parameters in a region containing a solution, it can

be shown that the solution represents an absolute minimum for Q in

that region and is the only solution in that region. However, if the

matrix is not positive-definite in that region, then there may be

other "solutions" for the same set of data.

With regard to the power and exponential functions, it can be

shown that the matrix of second-partial derivatives of Q will be

positive-definite for values of the parameters which lie in the re-

gion defined by

2 • Y - Y > 0, (coefficient A > 0 for power function)

ci i

where, again, Yci = calculated value of dependent variable at point i,

Y, = observed value of dependent variable at point i.

If there is a solution in the region defined above, then that solution

represents an absolute minimum of Q and is the only solution in that

region. In addition, it seems reasonable to assume that the above

condition should hold in order to have a good fit for the power and

exponential functions.

In summary, one should be aware that for a nonlinear function

the "solution" obtained may not represent an absolute minimum for Q.

The only sure way to know is to try all combinations of the parameters

for each data sample to determine all "solutions" and to then determine

H. 0. Hartley, "The Modified Gauss-Newton Method for the Fitting
of Non-linear Regression Functions by Least-squares," Technometrics,
Vol. 3, No. 2, May 1961, pp. 273-274.

The proof is given in Appendix D of RM-4879-PR by Graver, Boren,
o. cit.



wh i ch soI it on giv, es tI,,. I west sun, of sq-iares of Y residia s or

p r t t i c ai r, as ms this is v 'cry difficult to do. However, on, must

r, .nibr that ht, is attempting to find a solution to a function .hat

adequat,] y rupresents th data. Wither or not there are solutions

in other unknown r ,gicns may be rather uniiportant if the solution

that is found is satisia:,tory to th analyst--that is. it satisfies

his criterion for a go,' fit.

For turther information on -,nilinear least-squares solutions
the reader is roferred to Applied Regression Analysis, by N. R. Draper
o,d Ht. Smithn, John Wiley and Sons, Inc., New York, London, Sydney,
1966, Chap. 10, pp. 263-304,.

4I



-39-

Append'Lx B

LEAST-SQUAP.ES SOLUTION FOR ASm2PTO'rIC- POWER FUN CTION

DETERMO1ATION OF PAAEESA, B C

For this program, a least-squares fit is assumed for the data,

in which the sum of the squares Of LIhe Y residuals (differences between

the observed values of Y and the corresponding calculated I'alUes of

Y from the regression equation) is a minimum. Therefore, the Y resid-

ual (R) at any point i is

R, Y - Y 1

or

Ri = - (A. Xl B + C),()

where

Ri Y residual at point i,

Y, observed value of Y at point i,

Y W calculated value of Y at point i,

xli M value of independent variable at point i,

A, B, C -parameters to be determined.

The requirement for a 1e~st-squares fit for N sets of points is that

the suu of the squares of the Y residuals (denoted by Q) shall be a

minimum; that is,

N

Q (Y A - C) 2 w in.

B
First let Z i Xi . Then Equation (2) can be written a., follows:
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Q z L(Y i A Z - C) mnin., (3)

in~

Fromi normal regression equations

N

(Y. Y). (Zi -Z)

(Z. Z)
ii

C = - A Z(5)

Substituting the above expression for C into Equation (3% gives:

N
-2Q y (Y -A Z)]

i
i=

N

Q ( Y Y) - A (Z 2r ,

1=l

N N
-2-

N

ii

Let

N

-- s Yi - 2 g

S (y

P4

Ovurscores are used to detote mgeans.
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N

yz L Y - ) ( Z

i-1

N
-2

Therefore,

YYyz +A Szz

From~ Equation (4) and the above definitions:

S( 
6

zz

Thus,

/SS
Q -S -2 S..~ +Iz.

(S )2
Q yy S

ZE

However,

N

S -71. (Yi Y) (Z~ - Z)

N N
S yz -71(Y - )z 1 - (y
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N

S ( - z - i  since ( Y) = 0.
i=I i=l

Also,

N
- 2

S = (Zi
~i=1

N N
7 2 2 + i2= z . -2 Z

zz :. I i _

NN
+ 7,

7- 2 1 T

S = Z. -2 • • /)

SZ Zzz i..
- 4 N * -i)

. = Z (N)-

Finally, using XlB for Zi, and the above definitions, one has,

from Equations (6), (5), and (7):

N

/ Y. - Y) *XiB

A j l (8)

2B I Bxli  - --
-, N 2,

1 -' /
N

-B

C Y-N A1'i (9)
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N 12
N (Y ) - ) B

( -Y __-- min. (10)(Y1-Y)(Y

i=l xl2B  - x

i N
i=1

Equatior (10), which represents the sum of squares of Y residuals, is

therefore equivalent to Equation (2) but is expressed in terms of only

the one parameter B.

if Q is to be a minimum, the partial derivatives of Q with re-
*

spect to the parameters must be zero. However, since A and C are

determined from Equations (8) and (9), there is no need to obtain

the partdal derivatives of Q with respect to A and C. From Equation

(2), one has:

N

=2 (Y - A, X - C) (-A • xI • In Xl) 0
)B i

i=l

N N N
B 2B x l:l 0Y X1 nX - Xl In Xl C XB In 'li 0.

i 1. L. i t5 i1=1 i~l i=l

Let G represent the above function. Therefore.

N N N
B 2BG y X1 InXI-A Xl Ln Xl -C X0 In Xl

i £I i I

(11)

The problem then becomes one of finding the value of B that makes G

zero.

As was stated previously, this is not a sufficient condition for
a function that is not ! near with rospect to all of its parameters.
(See Appendix A.)
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The sequence of operations in 'he computer program is as follows.

First, the various summ~ations involved in Equations (8), (9), Ind (11)

are obtained using B = -3.96 (ini~ially). Th-?n A and C are determined

from Equations (8) and (9), respectively.* After these cal, ulations

ire made, the value of G is obtained, and its algebraic sign~ is noted.

The machine then steps the value of B by +0.05, repeats all of the

summations and calculations, and checks the algebraic sign of G again.

This procedure is continuee, until the algebraic sign of G is reversed,

signifying that a solutior. lies somewhere between the previous value

of B and the value of B at this cross-over point.

At this point, the program begins an iterative operation in which

at each cross-over point the incremental step is halved and the direc-

tion of advance is reversed. This iterative procedure is done as many

times as desired to give any degree of accuracy required for B. In

the program, this procedure is repeated until the changes in the abso-

lute values of A, B, and C from one iteration to the next are each

_-8

equal to, or less than, 10-8

The search for roots continues to B - -0.01. After this point

is reached, the program begins another search starting at B = +0.01

and proceeding by increments of 40.05 out to +3.96. If no solution

at all is found within these limiLs , a statement to this effect is

printed, and the program continues on to the nex~t run. Any time a

solution is found for A, B, and C, the sum of squares of Y residuals

(Q) is deter-mined and compared with the corresponding value for the

previous solutton (if there was one). The solution that gives the

lowest sum of squares of Y residuals is stored temporarily for com-

parison with any future solution so obtained. In this -jay, when the

search is completed and if there is a solution, that solution will

generally represent the lowest sum ot squares of Y residuals _n the

region searched.

i*

Acknowledgment is made to Mr. James Johnston (now at the Insti-
tutc for Defense Analyses) for his suggestions in the initial program-
mning aspects of this problem.

If C is- Specified, Lhen thaL vajuc is used instead of calculating

C from Equation (9).j

II
II
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Any "solution" found in the specified range for B represents a

solution for which the part ial derivatives of Q with kespect to the

parametecs are zero. The Q value for that solution is also compared

with the Q values for the end points of B to make sure that Q is not

decrea,,inye to -ome other minimum outside the range of B. Test cal--

culation, of Q as represented by Equation (10) indicate that Q in-

creases smoothly to apparentI, constant values for large values of

negative or positive B. As of now, the author has not been able to

determine any requirements for unimodality of Q but has observed that

for data applicable to this function, Q seems to be unimodal in the

r,i . seached. Even if it is not, the most minimum of those modes

will usualty be found. As stated before, one must be aware that there

co, d be other minima outside the range searched which cannot L-., de-

rmined by the above method. However, this may be relatively unim-

portant if the "solution" found satisfies the analyst's criterion for

a good fit.

The above limits on B and the incremental stepping value of 0.05

were chosen on the basis of economic computer operating Lime and the

extent to which the search range should Le covered in order to lessen

the chances of missing a root. Although two roots could cc -ivably

be missed in the incremental step of 0.05, indicating that the G func-

tion goes toom, say, a po!sitive to a negative to a positive value within

an interval of B cqual to 0.05, this seems rather unlikely. Such a

function would have to behave extremely erratically, and tist results

seem to indicat 2 that this function does not gtrirally behave in this

manner.

Perhaps it should be noted that a degenerate, oL trivial, case

results if B - 0 or if all Y values are constant or all XI values are

constant. Any of these conditions causes the numerator and denominator

of Equation (8) to be zero (an indeterminate condition), Of :ourse,

this can bc seen from the asymptotic-power equation ts.2 lf. Any of

the hove conditions cause it to reduce to:

Y = constant.

4i
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Appendix C

LISTING OF CURVES FORTRAN-IV

CKPU7ER PROGRAM



$I8FTC MAIN

COMMON A, At, 8, BI, C, Ci D, DI, AH, g~t CH, OH, AN, ANt,
C AN2, OFI, OF2, OFT, FVALUE, CO, CV, R, PDEVM, SEY,
C XV, YV, YDEVSQ, EA
COMMON It, [DISK, [ERR, IFV, ISOLVI, ISC|, N, NJVt NOTE, NP
COMMON H44,4), T14), SOEV(4I), VMEAN(4), S(301t V(20196),

C. POEV(200), XIL(200), X L(0O)t X3L1200 , YL(200),
C YC(200), YOEV(200)

COMMON ISC(4), JX 6) , FMT( 1), UTLEIIb), IND, IPAGE, IEQ,

C [ORD, NID, NRUN
bIMENSION 101(201), ID2201), Yf?01)9 XI(2Ol)t, X2(2O11

C X3(20i)t Fill
EQUIVALENCE IF{I), A), (I101( ), Vi1,1)), 1102(1)v V( 1, )),

L (Y( ), V(1,31), I(li ), Vi ,t,)), IX2(1 ), V(1,5)),
C IX (II ), VI1,6)), fJX( ), JI), (JXi2)t J2),
L (JXf3), J3), uX(f4), J4), (Jg(51, J51, (jX(6), J6)

C

C MAIN RnitirN fF triIwrI REGRESSION ANALYS.I C.OPJTER PROGRAM
C
C SET PAGE NUMBER TO 1.

10 IPAGE a I

C SET RUN COUNTER TO 1.
NRUN a I

C PRINT MAIN HEADING ON FIRST PAGL.
,wRITE (6, 201 IPAGE

20 FORMAT (IHI1/, 45), 43HCUkVES REGRESSION ANALYSIS COMPUTER PROGRAM,
, 27X, 5HPAGE , 1I II/ I

C STEP PAGE NUMBER P, 1.
[PACE IPAGE * I

C L!,EAk C(;MNMON.
0 U0 4O I a 1, 2706

f-(I) 4 0.

40 LONI INUk
C SET SUB.UtuTINE INVICATOR TO 1.

IND I

CALL REA0

LAt INPUT
CALL CHECK

CHECK ERROR OESIGNATOR.
I (I JERR .EQ. II GO TO 110

CALL SUM'&
GOl Tfl 150, 60, 10, 80, 901, IEQ

50 CALL lINE

uO TO 100

60 cALL PARA
"O TO too

10 LALL POwR

GO TO L0
80 CALL ASYM

GO TO IO
90 LALL XRPO

100 If IIERR ,01 . 1) GO TO 110
CA L IIA T
CALL OUT I

CALL OUTI
(. lP RUN COUNTER IY 1.



110 NRUN *NRUN + I
C RSET PAGE NUMBER TOIPAGE Iz I

GO TO 30
END



lBric REAL)
SUBROUTINII RE~AD
COMMON At Al, 8, Bit C, C!, 0, 01, AH, BH9 CH, 0H, AN, ANI,

c AN2, 9Pl, OFbt OFT, FVALUE, CD, CV, R, PDEVM, S,
c XV, YVt VDEVSQ, CA
f:OMMCPN !At IO15K, IERR, IFV, ISOLVE, ISCI, N, NIV, NOTE, NP
COMMON H(4,4)v T(411 SDEV141, VMFAN141, S130), V(201,6)t
C PDEV(200I, XILI2OCU', X2L(2u0), X311200)9 YL(200)t

C VYC 200), YDEV(200)
COM4MON TSC14), JX(61, FM~fI8), TIhI416)t INDt IPAGE, IEQ.

C lORD, NID, NRC011
DIMENSION 101(201), ID~ie~01), Y1201), X14201), X2(2O11*

c X3(201), Ff1)
DIMENSION KX(5), KV(6)
EQUIVALENCE (Ff1), A)* (101(1), V(l))v (102(1)9 V(1,21),

L fYI1), V(193)), fXIfl), V(1,411, (X2(l), V(l,5fl,
C. (l), Vfl,6))w 1jxII)t it), (JXf2)9 J2),
c (JX(3), J3), IJX14)9 J4), (JX(51, J5)v (jX(6)t Jo),
CATA KVf 1), K~f/)v KV(31, KV(41, KVfS~ 51K'V(6)/

C 2HIct 2HYI, 2HXI, 2HXI', 2HX3v 2H/
C
C SUBROUTINE FOR RFADING TITLE CAR0, ORDER CARD. AND VARlABLE-FORMAT
C CARD
c
C READ TITLE CARD.

10 READ ( 5o 20) I9MT, 1015K, IEQI, JORDI, (SC!, IA,
C IT11'LE( I), I -1, 16)

2o FORMAT (611, 2X, 16A4)
C CHECK TITLE CARD FOR TERMINATIO t. DESIGNATOR (IFMT z ')

30, IF IIFMT .EQ. 9) CALL EXIT
IF 4 IEQI .GF. 13 IEQ - IQL
IF uioRDI .GT. 0) lORD 1 I 1I1-.0112)

C PRINT TITLE AND PAGE NUMBER ON FIRST PAGE
40 IF IMPUIN G-. 1) GO TO 55

WRITE (6* 50) fTITLEMI, I It1 16)
5o FORMAT I IH / IOE, 16A4I/

GO TO 65
5') WRITE 46v 60) (11TIIEII)t I1 1, 161, [PAGE
60 FORMAT IIHI/ lOX, 16A4, 41X9 5HPAGE 9 12/1 3
CSTEP PAGE NUMBER BY 1.

IPAGE m [PAGE + I
P RINT SUBHEADING.

65 CALL PRINT
C TESY WHETHER TITLE CARD FOR FIRST RUN CONTAINS THE VARIABLE-FORMAT
C INDICATOR IN COLUMN 1.

IF INRUN .GT. 1) GO TO 90
IF IIFMT .GT. 0) GO TO 100

c wRI Tt ERROR MESSAGE.
TO WR11F (6, 80)
8O FOR.'At IIHO//* LOX, li6HTHE VARIABLE-FORMAT INDICATOR HAS NOT BEEN
C E-NFERED IN COLUMN I OF THE FIRST TItLE CARD- THIS JOB HAS B~EEN T
CLERM (NA TI: .)

CALL EXIT
TEST WHETHER ORDER CARD AND IFORMAT CARD ARE TO BE READ) FOR THIS

CRU$N,
90 IF IIFMT .EQ. 0) GO TO 110



C 'EA, JR!)( r OA U.
100 READ 15, 1;01 (KX(I), ! , ) NI~j

110 FORMAT (5f1A, IX (li
IF (P1I .GT. 0) NID - NJDI

JMAX a
00 150 K It 5
DO 120 J - 1# 6
IF (KX(K) .EQ. KV(J)) $0 TF -30

120 CONTINUE
C WRITE ERROR MESSAGE.

WRITE (6v 125)
125 FORMAT (iND// lOX, qSHTNERE IS AN ERROR IN THE VARIABLE-FORMAT

C INDEX (SECOND INPUT CARD). THIS JOB HAS BEEN TERMINATED. )
CALL EXIT

130 IF (J .NE. 1) GO TO 140
JX4i) - I
JXI+.1) a 2

GO TO 145
140 JX(I) a J * I

I a I + I

14S IF (J .EO. 6) GO TO 150
IF (JMAX .LT. JI J14AX - J

ISO CONTINUE
C READ FORMAT CARD

READ (5, Ilt' (FMT 1), I t o 1, 1
160 FORMAT (18A41

C NURSER OF I"DEPENDENT VARIABLES
170 NIV a JNAX - 2

c JMSER OF PARAMETERS TO BE SOLVED (NP)
NP 8 NIV * I - IA
IF IIEQ .EQ. 2 .OR. SEQ .EQ. 4) NP - P * 1
IF (IA -'. 0 .AO. ISCI EO. 0) RETUAN

C READ SCALE FACTORS AND/OR VALUE OF Y INTERCEPT.
IF (lEO .M. 4 READ (So 1603 (ISCIi) I a i, 41, A
IF IIEQ .EQ. 41 READ Ile 1801 IISC(I) 1 - 1, 4), C

160 FOkRT (412, 81( F10,01
RETUR14
END



%!NFTC PR~INT

SUOROU1iNt PRIN17
OpepON A1v Alt P, Lj C0, C O 1 1 v A ;~o V4 "H H, AN, AVI 9

C XV, Df 1 ~OV$F, cLA -sI ECD ,PcVSv

COMMON IAt IDISY, IERR, IFV, ISOLVE, ISC!, No NIV, NOTE, NP
COMMO0N H('.,41# T(4)* SCEV('.)v VMEAN(4), S(10)v V(20l,6)I,

C PDEV(2000, X1L(2O0)9 X21(200)t X3L(200)9 YL120CI.
C YCI200)9 YDEV(200)
COMM~ON (SC(4, .JX(6)t FMT%'19), TITLE1161, IND, IPAGE, IEQ*

c l0Ot N109 NRUN
DIMENSION 10Hi2O1), 102(201), Y(201), ZL!

L X3(201il Fl)
EQIJIVALENCE (VII)t A), (10111), Vi1,1))t (10711)v Vi,2))v

c (Y(l)o V(1,31)9 1X141), V(1,41)9 (X2(1l, V'195))#
c IX3(1J, V( 196))I, IJX(l), Ji), (JX42), J2),

C (JE(3)t JI), (JX(4)o J4)e MJXM#) .15)v IJX(6)9 J6)

c SUIPOUTINE FOR PRINTING SUBHEADINGS

10 GO TO (20, 40, 60, 80, 1003, (EQ
20 WRITE 46, 301
30 FORMAT U1HO/t 36X, SqIHLINEAR REGKESSION Y A (B* X)J + IC~ *

L X2) * ID * X3)/)
REYURN

40 WRI Tk (6, 50)
50 FORMAT (IHO/, 39X# 52HPARABOLIC REGRESSION -- I=A + IR * X) +

L (C * X**2) / I
RETURN

60 xRITE (6, 101
70 FORAAT (1110/ 37X, 55HPOWER REGRESSION -- Y = A *(XI**B) * (X2**C)

0 (X3**(J) / I
RETCWIN

81) WRITE (b, 90)
90 FORMAI (IHO/, 39X, 'SHASYMPrTlIlc-P0WER KEGRESSION -- Y a(A *

(, (X**B)l I C /I
RE ITUR N

10C wkITE (6, 110)
ItIC FORMAT (1H0/s 4/?X, 46HEXPONENTIAL REGRESSION Y- EXP(A +

4 4e * X) I

Rf ITURN
I NO



jUBROUTINI: INPUT

1A, A:, iv P', C, ;A, 0, A)I, AM, BH CH, OH, AN, A4i,
C AN?, OFI, 0F2t OFT, FVALUE, CD, CV, R, POEVMe SEY,

C XV, YV, YDEVSQ, FA
COMMON IA, IDISK, IERR, IFV, ISOLVE9 ISCI, N, NIVt NOTt, NP
COMMON H(44,4), T(4), SDEV141, VMEAN143, S(30), VI201,6)v

C- PDEV(200), XIL200)t X2LI2O0)o X3L(200), YL(200),
IC YC(200), YDEV(200)
COMMON ISC(4)v JX(6), FMTiI8), THiLE(l6), [ND IPAGE, IEQ,

C lORD, NID, NRUN
DIMENSION 101(201) 102(201), v#201)v Xl(20), X2(201),

C X3(201)9 FIM)
DIMENSION VDATA(20)
EQUIVALENCE (Fi}j, 4)9 (IDIili, Villi)), (102(119 ViIP)),

C I (Il), V(1,3)), (XIII), V~it, )1, IXZ(I)t V(1,5))@

C !X3i1), V(196)), (JXII), J), (JX12)9 J2)t
C (JXI3i, J3), [JX14), j4), iJX(St J:eIv tJX(61 J6)
DATA BLANK, IBLANK/4H 4H f

C

C SUBROUTINE FOR REAUING IN DATA AND WRITING DATA ONTO UTILITY DISK
C

10 IF IID1SK ,EQ. 0) GO TO 60

REWIND 4
C SET INPUT TAPE NUMBER

IM z 4

IF IDISK .EQ. 2) GO TO 70

0O 50 1 a1t 201
C READ INPUT DATA AS ALPHANUMERIC DATA

READ (59 201 IVDATAEJ), J = t 201
20 FORMAT (20A4)

C WRITE INPUT DATA ONTO UTILITY DISK.

WRITE 14, 20) IVDATAIJ), J t , 20)
C CHECK FOR BLANK CARD.

00 30 K - I, 20

IF (VDATAIK) .NE. BLANK) GO TO 50
30 CONTINUE

REWIND 4
40 GO TO 70

50 CONTINUE
REWIND 4
GO TO 10

C SET INPUT TAPE NUMBER.
60 IM = 5

C READ INPUT DATA FROM EITHER CARDS !IDISK 0) OR FROM UTILITY
C DISK IIDISK - 1).

70 IREAD a 0
DO 80 1 - It 6
If (JXll) .EQ. I) I :AD - I

60 CONTINUE

C SET IDENTIFIERS TO BLANK

VU R5 1 1, 200
ICIlii IBLANK
10'(1) [ IBLANK

85 CONTINUE
IF (IL 'A0 EU. I) GO 1O 90



,) Tnl I 100, 1 30, 160), NIV
90 IF (MID .EQ. I) GO TO 280

GO TO (190, 220, 250), NIV
100 DO 120 ' a 1, 201
110 READ (Im, FMT) VlI,JI), vii,J2i

IF (ABSIY(11) + ABSIXIMII) .Q. 0.) GO TO 560
IF YIi) .EQ. 0. .OR. X1l4) .EQ. 0.) GO TO 110

120 CONTINUE
GO TO 590

130 UO 150 1 - 1, 201
140 READ (IM, FMT) V(i,Jll, VlIqJ2), V1IJ3)

IF (ABSMYlI)I + ABSIX(I)) + ABS(X2(I)) .EQ. 0.) GO TO 560
IF lYIl) .EQ. 0. ,OR. XlII) .E(Q. 0. .OR. XZ(I) .EQ. 0.) GO TO 140

150 CONTINUE
cO TO 590

160 DOI 180 I s 1, 201
170 READ (IM, FMT) VIIJI)v V4IIJ2)# V(IvJ3), VltJ4)

IF (ABS(YIL)) + ABSiXII)) + ABS(X2MI)) + ABS(X3(I)) .EQ. 0.1
C GO TO 580
IF IYII) .E(,Q. 0. .OR. XlIi) .EQ. 0..OR. X2VI) .EQ. 0. .OR.

C X3I) *FO J.) GO TO 170

180 tLUNTINUE
GO YO 590

190 00 210 1 - It 201
200 READ (IM, FMT) VlIJl)t V(IiJ2), V(,J3)9 VlIJ4)

IF (ABSIY(Il)) ABS(X1(I)) .EQ. 0.) GO TO 580
IF IY() .EQ. 0. .OR. XHII) .EQ. 0.) GO T0 200

21C CONTINUE
GO TO 590

1ZO VO 240 1 x 1, Z01
230 READ 4IM, FMT) VlIlJI), VlitJ2), Vil,J3), VIIJ4)

IF 4ABSiYII)) + ARSIxI(IH) + ABS(XZIII °EQ. 0. GO TO 580
If (II) .EQ,. 0. OR. XlIi) .EQ. 0. .OR. X2411 *EQ. 0.) GO TO 230

>,O CJNT INUE
GO TO 590

25 C 00 270 1 - I, 201
260 READ (IM, FMT) ViIJL), VIIJ2), VItJ3), VIIJ4), ViIJ)tV(lIJ6i

IF IABSiY(L)) ABSiXI(1) + ABS(X2II)) * ABSIX3i)) .EQ. 0.)

. GO TO 580
IF EVIll .EQ. 0. .OR. Xli) .EQ. 0. ,OR. X2(I1 .EQ. 0. .OR.

X3I ) LQ. 0.) GO TO 260
270 CONTINUE
280 00 290 1( x I, 5

IF iJXiK) .EQ. 1) GO TO 300
230 CONTINUE

GO TO 610
100 GO TO (310# 380, 4701# Niv
310 GO TO M~O, 14609 3601, K

320 DO 330 I - 1, 201
325 RfEAD (IM, FNT) V1IIJI), ViIJ3), ViIJ4)

IF (ABSIY41)I # ABSIXIMII .EQ. 0.) GO TO Sfj'
I MY{l) .EQ. 0. *OR. XlII .E%,. 0.I GO TO 325

330 CONTINUE
60O TO 510

340 DO '50 I - It 201
iS5 READ ([IMe FMT) Vl l Jl)t V(l,J2), VI lJ4)



iF I~1S5HH h~S~1(!) LQ. 0.) GO To Soo
IF (Y(f ) .EQ. 0. .OR. X (I) .EQ. 0.) GO TO 145

150 LONTINUF
GO TO 590

360 00 310 a i, 20!
165 READ 1IM, FMT) V119J0)9 VtIJ2), V(|oJ31

IF (A8S(Y(I)) + ASS(XIII)) .EQ. 0.) GO TO 580
IF MY|I) .EQ. 0. .OR. Xl1) .EQ. 0.) GO TO 365

370 CONTINUE
GO TO 590

380 GO TO (390, 410, 430 450), K
390 DO 400 1 a 1, 201
395 READ IN, FMT) VltJl), VIi,J3), VIIJ4), V!IJ5)

IF (ABSEY(1) + ABS() + ABS2(M)) ,EQ. 0.) GO TO s80
IF MYI) oEQ. 0. .OR. XIM .EQ. 0. .OR. X2I1) .EQ. 0o. vJ TO 395

400 CONTINUE
GO TO 590

410 00 420 1 a 1 201
415 READ (IN, FMTI V(IJlID, Vii,J2), VflJ4), VItJ5)

IF IABSIYII)) + ABSXIIi)) + ABSIX21I)) .EQ. 0.) GO O 580
IF fY11) .EQ. 0. .OR. XlIM .EQ. 0. .(R. X2(I) .EQ. 0.) GO TO 415

420 CONTINUE
GO TO 590

430 00 440 1 a t, 201
435 READ (IN, FMT) V(I,Jl), V(IJ2, V(iJ3), V(IJS1

IF (A&S(Y()) * ABS(XI1I) + ASSIX2(I1I .EQ. 0.) GO TO 560
IF IYff) .EQ. 0. .OR. XIII) .EQ. 0. .OR. X1Il) .EQ. 0.) GO TC *35

440 CONTINUE
GO TO 590

' 51 mv 60 i- i. zui
455 READ 4I, FNT) V(IJl), Vi|,J2), V1I,J3), V11,J'b

IF (ABSIYIi)) + ABSIMlI) + AbS(X2(1)) .EQ. 0. GO TO SIO
IF %YI) &EQ. 0. .OA. kill) .EQ. 0. .OR. X2(l) EQ. 0.) GO TO 455

460 CONTINUE
GO TO 590

470 Gu TO (480, 500, 520, 540, 560), K
480 DO 490 1 * 1, 201
485 REAU (IN, FMT) V(IJi), Vli,J3), VlIJ4), Vfi,JSI, V(IJ6)

IF fAbS(Y(I)) + ABSIXMI)) + ABS(XZ(I)l o ABS(X3(Il)) .EQ. 0.1
C GO TO 580
IF (Y1I) .FQ. 0. .OR. XIM ) .EQ. 0. .OR. X2(II .EQ. 0. .OR.

C X311) .EQ. 0.) GO TO 465
490 CONTINUE

GO TO 590
500 00 510 I a 1 201
505 READ IlM, FNT) VIIJI), VliJ2), VIIj4), V1iJ51, VII,J6)

IF (ABSIY(I)) # ABS(EI(I) * A8SSM211)) * ABSIXIlI) .EQ. 0.1
C GO TO 580
IF (IYII) .EQ, 0. .OR. XfI) .EQ.. 0. .OR. X2(l1 .EQ. 0. .on.

C X3 1) ,EQ. 0.) GO TO 505
510 CONTINUE

GO TO 590

520 00 530 1 - 1, 201
52S READ lIM, FMT) V(I,Jl), VfiiJ2), VIIJ3%, VII,JS), VII,J61

IF (ASIYMI) + ISIXI)) + *ABSfX2(I)) * ASS()(I) .EQ. 0.)
C GO TO 580



1+ t'( r I o .0. Eto j { I . . ,,* ,t/ .4 )*(,, ;

530 LlNT INt
... .... .. ! - , ?n)

'545 R1AD 1Il , FM!) VIl,Jl), Vii,J?), Vll,Jfl, ViiJ,:+), VII,J6)IF (ABS?(YIIJ , ABS(Xi(o)) ABS(X(!)) *AtX311)E. ).
C GO TO 580

IF (Y(I) .EQ. 0. .OR. XIIl) .EW. 0. .0-R. (iI) .FQ. 0. .OR.C X3(1) .EQ. 0.) GC TO 545

(5C CONI INUE(,P TO s9o

560 00 570 1 r 1, 201
565 REAC' ( IM, FMTI V(I,Ji), VI ,J2), VI I,J j, VII,+j4), V(IJ5)IF +D8S{y(I|J * ABS(XI )I + AbS(X2(IL) + A8S X)([II EQ. 0.)

C &ln TO 5Ho
IF (YII) .E . 0. .OR. XI(f) EQ. o. ,OR. 2 I .E21 0. .OR.C X-MI .t-Q. 0.) GO TO 565

' r, CnNT INU!
GO TO 590

,(0 IF (I0ISN .NE. 01 PEWIND 4
c SE T N EQUAL TO Nt1MmIt-R OF VA' PrINTS.

C FLOAT N.
AN = N

c NUMPER OF DATA POINTS LESS
ANI a AN- 1.0

C NUMBER OF DATA POINTS LVSS 2
AN7 v 4N- 2.0

590 wKITE (6, 6.o)Ok) Ff0RMAT IIHO/f , 96HNUMBER oF INPUT DAIA POINTS HAS ExCEFEDLC MAXIMUM ALLOWAI3LF (:00). THIS JOF HAS FEN TERMINATED.)
CALL EXIT

(10 wRITU ( 6, 620)
b2() FORMAT (.HGI/ lox* IIIHTHtkf- IS AN ERROR ASSOCI4TED ',IH THEI(JNTIF ItR-FORMAT OESIGNATOR IOK'OER CAR(D). THIS JOB HAS BEEN TLR

rINA TEO.)
tAt I FY.I T

t Nh



A . A, I , 1p C i L H H H A N AN I.

AN? , [IF I1. fF7, CFJ T V ALUt L L V~ R P()F VM' Y,

X # vv, Y r)[-v E LA

000 4 UN I A, 10 1 SK, I FR, IkV, I SOL VE, I C&. N, N I V, NOTE. NP
(,()MmCNH14,4), T(4 9 SDEV(4;, dDEAN(41. ,(30), V!201,6),

PUE V (20() , XH, 12 0U C' X2L ( 00 1 XL i 06 YL ( 20nJ
C YCE00, YulfvI l?10)

cfN~NISCI4), JX~b), fMTfj$), TITLE(1b), iMD. IPAGE, IrEQ 9
ICRO, NED, NRUN

I OEENSI N ID1(21 ) - 162(1 01 K . X 0

DIMfNSIflN RSC(4)
L~i~UIVALFN'0E (FE 1), 4), (IDI (1, VI 1,1)), 4ID?. i), VI 1,2)),

C ~(YEl) 1kV ( XIt 1), Vt 1,4)), 4x24 1), VttoS)fl
C (X3(l),yl), f.JX(I), Jt), (JX(?)q J2)-

SUAROU)TINE Etig CHECriNG DAIA FCP ERPCRS AND SCALING PATA

C CALCULATE SCALE FACTCRS.
10 CiD 2 C I 1, 4

Rsc(1) 11.0
-IF (ISC El) .NE. 0) RSC if) x 0.0**( ISC I))

'C CON'.T INUE
3D CO Tf)IC (.4?C 6 0,M 1 ,H N ~IV
4 C CO SC I x. I N

I1 F ( . 1'. Xl I (I IF * C. ) /0 TO 1 70
U;20 4S i - 3, 6
V4 1, J) £VI , J) *ASlEj-2)

~ 'rINT INUE
*C C CTqrI NU f

t0 UV, 70C I I.
I F y I I L F C. RxiI (A
U0 65 J *3, b
V(tIJ) * Vt I ? *l 4 A-.)

6 C 04 f1N (
ic CONTINUE

(I ; I c, 1 9
8 C 1 90 1, I

X31 1) 1L 0) C f. I I

Vt i .. ) VII.f J) C -2
F's LIT1Nu t
9C CC N T IN(,-

L2 UISC I .Nf.C !T~ E~ 6 tif

I SC L I*. s 6 41~N~ 2
IF ~ qf C ISC ,. 1- 1) $r C~ 'fl~~

A '' T 1, 1l- S AX ~ I - Ac 7
4. i -AT 0- 1* X, 2 0HKxI A L E -A t I I

~ ~ 91 .~K ( A- C I LI F ~,

L 4A I K ~~ Kt~V 7d~



RE T URN
c ERROR MESSAGE

170 WRITE 16, 18C) I
LMC FO3RMAT tIHO// IOX, 81HA ZERC OR NEGATIVE VALUE EXISTS IN THE INPUT

C DATA IFC' EAMPLE* DATA CAREJ NUMBER , H,33H)e THIS RUN HAS BEtN
f- TERMINATED.

IERR x
RE TURN
ENO



$IBFTr SUMS
SUBROUTINE StMS
COMMON A, Al, 8, BIq C, Cl, 0 D , Ot H. 8H, CH, OH, AN, ANI,

C AN2, CF1, 0F2. O.Fr, FVALUE, CDv CV# R, PDEVM, SEYI
C xv, YV YDfVSQ, EA
COMMON IA. [DISK, IERR, IFV, ISOLVE, ISi ?0. N1V, NOTE, NP

COMMON H1494), T(4), SDEVf4), VMEANf4?t Sf30), V1?OI,6l,
C PDEV(2CO), XIL(200)9 XEKf200), X3L11?OO), "'1(200),

C YClcO), VrEV(200)
COMMON 150(4), JX (6), F OT 1,1), TITCHI6). IND, 1, !AGE, 1E(.,

C IORD. Nil), NRIJN

C X3(201)9 Ff1)
LQUIVALENCE (F( V. A), (10ll1), V( 1.1)), (102(1), V( 1,2)),

f 3 iI), V( 6 ) I i I J x I I ) t j I 1 0 ( K , J 2 )

L I JA M( , JA ) ( JX ', 3, J4) , f JE I5) , J5)v , IJE(6), J6)

C SUOSROUT1Nt FPR CIkDFRING DATA A041 C8TA7N1NG VARIOUS SUMS AND
C STANDARD IDEVIATIONS CF INPUT 0D.TA

10 IF f IORC .FQ. 0) GC fO .0
C CODER THE DATA FROM LCW TO fH1G, VALUES CGI Y.

N K -N
00 40 1 1 , NK

GO 30 J IN, N

IF I y( I I LE. YfJ)) GO TC 30
CO 20 K 1 9 6
TEMP - Vf I. K
VI -VIJ,K ) EM

4 U CONTINUE 1  iv
c OB TA IN VAR IOUS SUMS CF INPUT DATA.

50 00 t' I -1I Nj
Vif I I *ALOG I Y I

EILMI AIOGI f)
ASO x Il! I I ElfI)

St~ 1 StfI) y f!)
S(2) Si j X I I
Sf 3) S( 53) 1 XI1

Sf 41 S( (4) X I II
5f5) ~~~ S Sf)CES

SW5 16) Sf6 (l I X2f 11
Sf 1) Sl Yf) + * (I I I x E3 (I
S(~ 8 Sf3) 4 4,X2f~ X21 )n
Sf91 - Sfi i X 2 1 1 K A L)
Sf 10) a Sf 10) X f ( I 1 3 1~)
S(I I ) asfl I I 1I I *Y([I

St 12) a 12) x f.'I) *! !)

IF I E Q Et~ I) DC P

S 114) SI 4!'+ Y* VI
~f S( I r(V I L i



S 1 16) SC h I e) Y L iI)
SC1 l7~ S i 17)+x 1L( I X I[ LI
IF I E Q ,NF. 2) 6 C T C 6 C

S 1 19 4 1 XlIS. 6 1

S(2(') S420) + (XISQ *Y(W

C OLACULAT - MEANS Cf- ' NPUt, rA IA.
t u C I I1, 4
VMFANfII %'SIlAN

0 QN T I N 0L
C CAUII-UL A H SuPS C9F T-I- I NL'tA UATA ABCuT THEIR MEAiNS.

K' 9 1, 4

~(K +2 0) =S(K42') + (IVHi'K42)--MENKj*2

*1W C UkNT INU.F

CMX(ULATfL STANGARU DM-V A'~ IG i f INPUT DATA.
W0 I CC K I1, 4
SiAVIK) SQT(c(Kt70G/ANl)

L 0( CON T INU
RTURN

LNO



SltF TC L INE
SUOROUTINE LINE

COMMN A~Al, 13, 81, C, Cl, 0, ul, AH, BH:, CH, QH, -449 ANI,,
C AN2, OFt, CF?, OFT, FVALUE, CD, CV, Rp PDEVmt SEY,

C XV, YV, YOrVSQ., EA
C0'MN0Nl IAq 1015Kw IfEP§. IFV, ISOLVE, ISCIt N, NI'Vv NOTE, NP
COMMON M14,4), Tl'), SDEV1', VMEANI4), S(30), Y%'20196),

L POEV(200), XIL(200), X2L(200), X3L(200), YU(200)v
C YC(200), YDEV(200)
COM"ON ISC!4), JX16), FMT.'iL), 71IILE(16), iND, IPAGE, [EQ,

C IORD, NID, NRUN
D!NFNSION lfD1(20l), ff24201), Y(201), XI(201J, X2(20tH,

C X3(20fl, FMl
EQUIVALENCE IF11), A), 1101(l), VIl,l)J, (10241), V(lt?fl.

C (Yll)t V(1,3))g (XllW, Vll4)), (l), V'l*5))#
C (X3(l), V'I,6))f (JX~I)t JI), IJX*,)t J2),
c (JX(3)o J3)t (JX(41 I'?, iJx(5), is), jo

c SUISROUTINE FOR DETrEg;INING LEAST-SQ.jARES SOLUTIONS OF PARAMETERS
C FOR LINEAR EQUATIONS OF FORM

c + i. (*Xj) +(C*x2) + (IJ*x3)v

C WHERE A MAY BE SPECIFIEfr
c
C DETERMINE VALLES FOR %LLFFlCiENTS OF LINEAR EQUATIONS TO B~E

SOLVED.
IC IF (IA .EQ. 1) GO TO 20

HU,1l) AN

H(21,2) 2 (52

H(204) S(6

H12,4) SM6

H(3#4) = (9)
H(t4 3(10)

H12,1) 1112)
H13,I) H 1193)
H(3#2) H(2,3)

H(4#1) H1,4)

H440) H 1(3,4)
III) v S(1)
T12) Sill)
TM3 S112)
IM4 S(13)

C SOLVE FOR PARAMFTERS.
CALL SOLVE
IF (IERR .E(J. 1) RETURN
A x All
d v SH
L CH
U DH
GO 10 3C
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20 F11,11 S(5)

H(1,21 5(6)
H(I,3) ,=S(7) .

H(1,21
12,21 a S(8)

H(2,3) r S49)
H( 3,1) - H(1,3)
Ht3,2) * N! 2,3)
Hl 3 v31 -, 3(10)

T(l) * Sfil) - fA * 5(2))
T2' ) S(12) - (A S 5f3))
T(3) S(13) - (A * -4fl

C SQL,: FOR PARAMETERS.
CALL SOLVE
IF ([ERR .EQ. 1) RUEURN
B a AMH

D * CH
C COMPUTED VALUES OF Y AND Y RESIDUALS

30 CC 40 1 x 1, N
YC(IT a A + ( * XI)) (C * X2(1)) (D * X3([))
YDEV-I) Yl!! - YC(I)

40 CONINUE
RETURN
END
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SIBFTC PARA
SUBROUTINE PARA
COMMON A, Al, S, Ol, C, CI, 0, Dl AN, OH, CH, DH, AN, AN,

C AN29 OFI, OF29 OFT, FVALUE, CO. CV, R, PDEVM, SEY,
C XV, YVP YDEVSQ, EA
COMMON IA, IOISK, IERR, IFV, ISOLVE, ISC1 N, NIV, NOTE, NP

COMMON H(494), T(4)v SDEV(4), VMEAN(4)v S(30), V(201#6)9
C PDEV20O)t Xl1i2'G), X2L(200)t X3L(200)9 YL(200),
C YG(200)t YDEV(20o)

COMMON ISC1(), JX16), FMTiS), TITLE1I6), INO, PAGE9 [EQ,
C IORD N0ID, NRUN

DIMENSION ID112011, 102(201), YIZOL), XL(201), X2(20lv
C X3(21), Fil)
EQUIVALENCE (Fill. A}, 1101l1), VIIl)), ID2(1), VII,2l),

C (YII), V(lv3)), IXI(I), V(l,4f), (X2(1), V(l|.t5)
C (X3(1), V(,6)), (JX.1), JI), (Jg(21, J21,

C fJX43), J3), IJXt4), J4), (JXI5), JS), IJX16), J6)

C SUBROUTINE FOR DETERMINING LEAST-SQUARES SOLUTIONS OF PARAMETERS
C FOR PARABOLIC EQUATIONS OF FORM
C
C Y a A + (B*X) 4 (C*(X**2)1,
C
C WHERE A MAY BE SPECIFIED
C

lu IF IIA . t. 1. GO TO 20
H41,1) , AN
H11,21 -. S(2)

I1,31 - SIS)
M2,1) - H(1,2)
HI2,21 - S(5)

H12933) S (18)
HilI) +H(I93))

H43,2) H1(2,3)
41 3*31 SIM19
III - Sill
T42) a Sill)
T13) v 5(201

C SOLVE FOR PARAMETERS.
CALL SOLVE
IF (IfRR EQ. II RETURN
A . AH
B *, SN

C a CH
GO TO 30

20 H(1,) a SIiI
Hit(21 a 3(18)
H12#11 o H1l192)

H(2,02) , S(19)
rl(6 - S(1 - (A * S121)
TI21 = SI20 - (A * S S1)

C SOLVE FOR PARAMErERS.
CALL SOLVE
IF IEAR .EQ. 1) REYURN

C 8 84

!' ~
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c (C(IPUYE-n VALULS OF Y AND Y RESID~UALS
C~ l - A0 f 11 * N,) + (

-LEVI -yCCI)

40) LkNT INU
LALCULAJC COORDINATES OF VERTCX POINT,.
XV =-/1 2.v c
YV =A *(3*XV) + (C *XV * XV)

f- T URN
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SYSF-'' PGWR
SUOROUTINE P(OWR

CO~PD~1A, Alt bo Bit C, CIv 0, 01, AM, SH., CM, OH, AN, ANI,
ANZ, DF1q DF2, OFT, FVALUE, CD, CV9 R, PDEVM, SEYw

c XV, Y~v YDEVSQt EA
6iol MrN IA, I015K, IFRR, IFV, ISOLVE. ISOI, N, NIV, NOTF, NP

compeNH(4,4)9 114), SDEV44)t VMEAN(4), S(30)9 V1201.96),
C POEV(200), XILI200', X2L(2001, X)L(200)v YL(2001,

c. YC(200)9 YDEV(200)
LOM MON ISC(4)t JX(6), FMT(1)t) TITLE116)t IP4D9 IPAGE, IEQ*

c IOP%',, NID, NRUN
01AENSION IDI.(201), 1021201), Y(201), X11201)o X21201)v

C X3(201)v FI)

c. IX3(11, 1(1,6)), (JXii), JI)t (JX(2)9 J2)9

c SUBROUjTINE FOR DETERMINING LEAST-SQUARES SOLUTIONS OF PARAMETERS
C FOR PCWER EQUATIONS OF FORM
c
c V A * (X1**B) * (X2**AC) * (X3**D)

c ISET SUBROUTINE INDICATOR TO 2.
10 IND =2

00 20~ 1 1-, N
c SET ALL. VALUES OF EITHER THIRD (X3) OR SLCOND AND THIRD (X29 X31
C IND.EPENDENT VARIABLES TO I IF NOT BEING CONSIDERED FOR THIS RUN.

IF iNIV LT!. 3) X3(K) -1.0
IF (IV LT?. 2) X211I) 1.0
X2111) %AIOGIX211))
X31(IIJ ALOGIX3(I))
HII,2) u1141,2) + XILII)
H4 , 3) H(l,3) 4, X2111)
H(I 1 =H(194) + X3 ( I)
H(292) o;H(292) +(XIII I * XIII I))
H(2913 a H(293) + (XIL(i) * X2III))
Wi294 - W12,4) + (XILII) * X3III))

H(30 = H(3#3) + (X2L(I) * X21(I))
H(#)a H1 394) + IX2LIt) * X311I))

H14o4) a H(494) + (XLI.1J * X31(I))
1(2 Tf,2) + (XILi * YLII))

T() (31 * I (x2L(I) * VIII))
F1 T14) + (x3L(IJ *YL(1)

20 CONTINUE
H(1,1) AN

HI ?1 1103)
HI 3, ip H 92-Y3)
14*41) HIU4
H(4#2) H(2v4i
H1493) H(,4
T(11 Sf141
FIRST, GJVFRMIN- LEAST-SQUARES SOIJTIONS OF PARAMTERS Alt b1, C1,

C 01 FOR LCGARITHMIC FORM
c



C LN(Y) - LN(AI) + (81 * LN(X ) + (Cl * LNi2)) + (DI. * LNIX311
C

CALL SOLVE
IF I[ERR *EQ. I RETURN
IF (AH .GT. 8&.) GO TO 30
Al - E P(AK)
81 m OH
Cl CH
I - OH

C DETERMINE LEAST-SQUARES SOLUTIONS OF PARAMETERS At 9, Cv D

C FOR EXPONENTIAL FORM.
CALL ITER
kETURN
wRITE ERROR MESSAGE.

3O WRITE 169 Cui Al
40 FORMAT (IHO//o lOX, 86HTHE EXPONENT AH IS GREATER THAN 88. 04

L SUBROUTINE POWR. THIS RUN HAS BEEN TERHINATEO // lOX,
C 5HAH , FIS.7 I

IERR I
RETURN
END

i ,A
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SIIBFTC AY
SUAROUTINE ASYM
COMMON A, Alt 8, Oit, C, C11 Ui, D>,iv AtbH, CH.~, £14,A Ali#

C We~, DFI, E02Z, OfV, FVALUE, CD* Cv M, pDEVM, SEY,
C COMO V9 yV, YDEVSQ, FA

COMMON A9 '"~SKI 1"R' IFVO 1SOL~tt ISCIt Nt. 0"IV* NOTE, NP
COpMON H14*4), T('Y' SDFVj4,q Vmf~n4 $13t0, V120),6)0
c POEVIZO0l, XILU200P# Xh(200)t 93L02001, -1 Db00),

C C(20019 YDEV(200)
COMMON IS(1 ~6.FMTfe'*[ TITLEI161, 1N0t IFAGEt ttEQ,

C xORD, NID, t4RUN
DIMENSION IZVI(20110 ID2(?OlI, Y(~ X140110 W20Z1if

c X3(20119 F(k1
EQUIVALECE (F(I; A), 1r2U1, V(L,1)39 1102(11@ VII.211V

C (X3(1;v V(1,611o 4JX(I)t JIl, (JMi2ly J2)9
tJX43hv J33, (JX44)9 J41, IS), i51, fiJxtf, .16)

DIMENSION SUM(61, IO5AVE131
C
C SUBROUTINE FOR DETERMINING LEAST-SQUARES SOLUTIOJNS OF iARAMETEAS
C FOR ASYMPYOTIC-POWER EQUATIONS OF FORM
C
C Y (A * IX**lI)) + L
C
c SET INITIAL VALUE OF 6 TO -4.01.

10 at a -4.01
c Sit FIRST-ITERATION DESIGNATOR TO I*

ITRS a1
20 DO 190 K a 1, 160

A3TORE a 0
R~SVOft a 0.
CSTORE a 0.

C SET 8 INCREMEN( INITIALLY TO 0.05
30 Of a 0.05

C STEP INITIAL B VALUE BY 0B INCREMENT.
81 a &I * Do
IF (K *NEd 81) GO TO 40
ITIRS u 1
81 6.01

40 8 atS
50 06 60 1 a to 6

SUI II a 0.
60 CONTINUE
70 On 80 1 - It N

EP a XIIII#*6
EPsQ X P * Kp
EPI X P 4 XILII)
SUMI 11 Su~f11 XP
SUP(21 a SUWI2) # XPSO
SUP131 - SUM13) + XPI
SUN~(41 a 6UM(4) + (XPSQ KIL(I)
SUMI5) *SUM(5) 4 (Y(I! * PI)
SUM(61 a SUM(6) + 1WyII) -VMfAhNU)I EP)

80 CONTINUE
A a SUM (6/(U( J 0 M 4 1) S U M (I/AN))
IF IIA .EQ4 0) C a IS(1) 1 A *StM41)))/AN



G s SUM15) - (A * SUMf4)) - IC * SUM(3))
IF 1K .EQ. 1) QSAVE(I) = S21) - (A * UM16))

IF (K .LU. 1601 QSAVEI(3) = S(21) - (A * SUM(6))

IF (ITERS .EQ. 2) GO TO 120
IF (GI 90, 170, 100

9O M -1

GO TO 11O
100 M I 1
110 ITERS - 2

GO TO 190
120 IF IM .GT. 0) GO TO 130

IF (GI 150, 170, 140
'30 IF (GI 140, 170, 150
140 b B - (0B * 0.5)

GO TO 160
150 IF (08 .GT. 0.04) GO TO 190

B v + (OB * 0.5)

i60 'CA a Am'(A - TORE|
0O z ABS(8 - bSTORE)
DDC v ABSIC - CSTOREI
IF fDDA .LE. I.OE-08 ,AND. DOB .LE. I.OE-08 ,AND. DOC .LE.I.OE-08)

C GO TO 170
ASTORE A
bsroftE 8
vSrORE = B

08 x8 * 0.5
GO TO 50

C USE NEW VARIABLES FOR rEMPORARY SOLUTION.
170 AA A

LC C
C SUM OF %JUARES OF Y RESIDUALS

YUEVSQ - 521) - (AA * SUM(611

IF 41SOLVt EQ. 0) GO TO 180
IF (YDFVS4 .L[. QSAVE(2)) GO TO 180
AA - ASAVE

8b v SSAVE
LC a CSAVE
YVFVSQ - QSAVE(2)

c STORE PARAMETER ,ALUES AND SUM OF SQUARES Of Y RESIDUALS.
180 ASAVE - AA

8SAVE - 88
LSAVE * CC
.jAVEI2) a YOEvSQ

%k FIRST-ITF14ATION DESIGNATOR TO 1.
ITERS a I
',FT SOLUIION OESIGNATOR TO I.
I s)t VE -, 1

190 CONTINUF
C IF A JNIQUt OLUTON FOR F DOES NOT EXIST IN THE SPECIFIED RANZf,
C PRIN) A ME'3SAGi RELATIN, TO THAT FACT.

If M|OLVf .FC. I .AND. YDEVS, .LT. wSAEf(11 .ANU.
C YI)fVSQ L7r 1 QS4 lV l GO TO 210
NRITF 16, 200)

,00 i{JRMA! IHO/I, qX, rsHNo SnLUTION HAS MiES FOUND FOR "H' PR BLEM
L IN TH kANGI Of -4 TO 04 FOR S.



RETURN
C RESTRoE VARIABLFS To ORIGINAL!

21[O A a AA
B wBIB
C = CC

C CALCULATED VALUES OF V AND Y RESIDUALS
DO 220 1 m 1, M4
YCII) 0 IA S IXIII).e'Bfl 9, C
YDFV(Ip * Yf -V(1J

220 CONTINUE
RE TURN
kND
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SIBFT. EXPO

SUBROUTINE EPO
COMMON A, Al, H, 11, C, CI, D, Ol, AH, 13H* CHv OH, AN, ANI,

AN2, D~i, OF2, T, FVALUE, CD, CV, R, POEVM, SEY,
C XV, YVt YOFVSQ, FA
COMMO IN tA, IDISK, IFRR, IFv, ISOLVEt ISClo N, NIV# NOTE, NP
COMilrN Hi,(44)9 T14), SOEV144), VMEAN(4), 5(30)t V(201,6),

(I PDEV(200), XIL(2O0fl, XL(201, XII(200), YL(200),
C YC(20O), YDEV(200)

L-OI'MON ISCM,) JX(6), FMT(IH)# TITIL(16)t INO, IPAGE, IEQ,
I OR D, N 10, NRUN

C X3(21,i), Ft ; H
EQ-J7VA1ENCE ( F( I ), A) , ( I 'I I, V( 1,1)), ( 102( I),o V(I I, ?)

C ~( X 3(1 , V4 19,6)) , ( Jx~(1), J11 I, JXK( ? ) J2),

C
C SL~OUT I Nt UIR OFTt RM IN ING LE AS I -SiUARE S %OLUT I NS OF- PARAME TF p

f1.14 EXPf!NENT IAL EQUATIrNS Cf FCRPM

C f K Pi A + d i * x)

C
C fIRST, OB~TAIN fAST-Qu.ARE% SO-,L!-"HNS OF PARAMETERS At, BtI FOR

C StMi-LCGARITHMIC FORM
C
C L N1Y V41 . IM H I X
C
c AET SUBROUT INE INIDICATOk T C 2.

I C IND) 2
ALCUATE OtNNATI9M OF At T F kM

UENCM - (AN * S5)) -(S(2) * Si)
Ctit(-K FCk !t (' DENOMINATORS.
IF IOENOM UL. . .OR. S(2) .EQ. G.) GO TO 20"
.ALCLULATE NU)MIHATOR (IF Al T E kM

ANUM a ( Sf ) * S'14)) - 15(2) ; "(!t)))

C LALiCUIAL At TERM.
At NM/EC
CAL(UILATE BI TURNM.

til 1('- - (AN 0 Al) )/S(2J
UFEi-RMINE LAST-SCUAMES SCt 1fN (,"r PARAMETERS A, 8 FOR

EXPCN!INTIAL FORN'
tALL I T f
k(-Tk1RN

stRITE CRROk PIOSSAGI.
2c VIIF 16, 301 DENM, S12), AN
IG fORMAT (IHO//,1CX,llIIHA SCIuTICN CANNUT BE OBTAINED HECAUSE A ZERO

( UfNCMINAIUN fXISTS IN CNE- CR f[f OFC TH-F TERMS ISUBR(1UYINE EXPO).
C ///IlOX, 8HPENON F 19.1 / OX, MHS12) FI15.7 I lX,
(MHAN, i'.

HE TURN
tzN0



SIBFTC SOLVE
SUBROUTINE SOLVE
COMMON A,9 At, B, 81, C, Clo Do Ole AH, OH, CH, OH, AN# AN19 s

C AN2, OFI, OF?, OFT, FVALUE, CD, CV, R, POEYM, SEY.
L XY* YV, YDEVSU, EA
COMMON IA, (015K, [ERR, iFVv ISflLVE9 ISCI, N, NIV, NOTE, NP
COMMON H( 4)4 T14 ),9 SCEV ( 4), VMF AN( 4), t f30) , V(201#6 It
L PDEV(200), XIL(20C), X2L(200). X31(200). YL(200),
C YC(2CO), YDEV(200)
COMON ISC14), JK16), FmT118), TITLE116), (ND, IPAG', IFQ,

C 1080t NIL, NfkkN
LIMENSICN 101(201)# 102(201), Y1201), 91(20119 X2(201),,

C X3 (2 0 1 F ( I
GIM[NSICN U(12), w(2C)
FQUIVALI-NLE IF( 1), A), 1 101 (l), VI 1,1)), (1"?1( ), VY 1#2)i,

(XM(I?, VI 1,6) , (JE( 1), JI), (JX(2), J2),
f, (J ( i), J1) , C JX 4) , J4 ), I JX(5i) , J5 ) , CJE(6) , J6)

c
C SUI3ROUTINI* FOR SCLVRN6 SIPULTANECUS EQUATInNS
c

GC TO f2o0, W., 4C, SQO)o NP
2 C I f (H 4 , Ii .fQ. C TU 0C

48 T (1)/H Ii ,
'kE TURN

I~ FIDENt" Q 0. ) W) TQ 60
Atiu4 - (T(ll /4( I ? t ( 2 1I .2)

RE TUA IN

f16 Ij *~l I q) -( 1) *82 H )I

L U 3 L A ) W 1U(2)1UI2) 1) 1

U (U C 1 2- H AlI *U I I L 12I

ANU -I Ia ( i 1 21 1' U 16' ) /U 2 ) II 4
AH AN(1,) 2,)) ((22 *HPi,

(3i a -U, *H 'L4 I '23 /U 2i,'

- ~1) 2 8.,h -. i24) *8(3,4.)

L. 1/I C ~ * . I I "' ~ 2, 4
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Wi?) U LI)IU(6)

W 3) U( I I )/u( 71
WI') x'UI4)/U(IvC)) * (071)/U(2))
W(S I (() U(8)/U(41)

W 4 7 W(2) * UIA)/1UIO))
h(8) ( WI) - Uf6)/u(2))
W9) W1) (U(12)/U(8))

.(1O) UII)/- UI) WA)

W f 21 (UtI I)/UfI1) - W2)
WI 13) - IU15)/U(6)) * 117)/UI IC))
W( 14) xW( 11 - (Utb)UM2)
Wi 15) ah1 3 ) - IkJI9)/U( 5))
W(161 W(41) * W(5) * W(6)
tW) = W(71 * W18) * W(9)
DENOM = (W(10) *W,'l) * Wi?)) - (W(13) W i(14) *W5))

IF (DENUM .FC. 0.) GO TC 60
ANUM z W(16) - W( 17)
AH zANUM/DUNO4
DENOMI (0 2) /U( 3)) b1U6) U ( 7
IF (DENCMI EFQ. 0.) GC TO 60
bq4181 (U14)/U(3)) -I()WUIH)

W(19) IU1I)/U(3. - (51/U7)'
ANUMI N(18I) - (AH *W(19))

I= ANUMI/01-NCMI
LH = I(l') -(Ali * U11)) -(SH * U(2)))/U(3i
0- (T(I) IAH * H(19,1)) - '6H * H(Iwi,) - ICH *H(tL,3)))/H-II4)

<C TURN
c -RHOR MESSAGd

60 WRtTE (6t 70)
70 FORMAl IIWO//IOX, 97HA ZERO DENOMU %TOR EXISTS IN THE rALCULATI0NS
C. OF SUOROUTINE SOLVE. THIS RUN HAS BSEN TERMINATED.)
(60 TO (120, 60, 100), IPiD

8C WRITE (6# 903
90 FC-MAT I IHO/ lOX, 61HNOTE. S4UBROUTIME SOLVE WAS LAST CALLED FROM
C SUB~ROUTINE POWR.

60 TO 120
100 b"RITE (6, 110)
110 9-ORMAT c(t'u/ 10X, 6IHNU!E. SUBROUT1Nt SOLVE WAS LAST CALLED FROM

LSUBROUTINE I hER.
120 IERH

RE TURN
END
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$18FTC ITER
SUPROUTINt ITER
COMMON At Ail, , O1t C, CI, D, D1, AH, 8H, CH, OH, AN, AN[,
C AN2r OFI, DF2, DFT, FVALUE# CID, CV, Re PDEVM, SEY,
C XV, YV, YDEVSQ, EA
COMMON IA, IDI.SKa IFRR, IFV, ISOLVE, ISCIt N, NIV, NOTE, NP
COMMODN Hf4,4), T14)9 SfiEV(4)v VMEAN(4), S(3O)v V(20196f,,

C PDEV(200), XIL(200)- XZLI2OO)t 93L(200), YL(200),
C YC(200), YDEV{200)
COMMON 1SC(4) JX(6), FMT(18), TIrLE416), INDe IPAGE, IEQ,
C IORO)v NIL) NRUN
oIMENsI1N IDI(201), ID2(201), Y(201)r X (201)t X(2120),

L. X3(201), F11)
DIMENSION Fp(4), ATEMP|II), BTEI P(II),CTEMP(It),DIEMP(|itiQIlI)
EQUIVALENCE IF(I), A|v (IDH{I), Vil191 I . (I MO (I Vflt2))t

C iY(1), V41,3)), (XIII,) V(194) , (X21L)t V(,10)),
C IXIII), Vf1 Afl, (JXIlI, JlI), (JXI2)t J2k
C (jX3), , J31 IJX4), J4), (JX(S)v J5), IJX(6), J6)

C

C SUBROUTINE FOR DETERMINING LEAST-SQUARES SOLUTIONS OlF PARAMETERS
c FOR NON-LINEAR EQUATIONS WHERE AN ITERATIVE PROCEDURE IS
C REQUIRED
C
C STEP SUBROUTINE INDICATOR 8Y 1.

IC IND x iND * I
C SET INITIAL GUESSES TO LOGARITHMIC SOLUTIONS

A % Al
8: al
C qCI

0 0D
20 0g 200 L * I, 50

C CLEAR H AWlD T MATRICkS.
U9 30 1 - 39, 58
FI) v 0.

3C CONTINUE
III lEQ .10. 3) GO TO 40

C CHECK MAGNITUDE OF A FOF. EXPONENTIAL CASE*
IF (A .GT. 88.) GO TO 230
EA m EXPIA)

40 CO 100 1 1 1, N
IF 1lEQ .EQ. 3) GO TO 50
El - A + 48 * XI())
E2 - 2.0 t El
E3 a XLIlI + E2
E4 m 12.0 , XIL(I)) I E2

C CHICK MAGNITUDES OF EXPONENTS.
IF (E2 .GT. 88. OR. E3 .GT. 88. .OR. E4 .GT* 88.) GO TO 230

C COMPUTED V VALUES
YCI) s EXP(EI)

C DIFFERENTIALS CF Y FUNCTION WITH RESPECT TO PARAMETERS A AND B
FP(I) a YC(II

FPi2) x YC(I) # XII)
GO TO 60

C CHECK MAGNITUDE OF TWICE THE PRODUCT OF EACH PARAMETER (89 C, U)
c TIMES LOGARITHM OF VALUE OF INDEPENDENT VARIABLE FOR WHICH
C PARAMETER IS EXPfrNET T IF GREATER THAN 88., PRINT ERROR MESSAGE.
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5C FAS - 2.0 * 8 # XIL(I)
FAC = 2.0 # C 0 X2L(I)
FAD - 2.0 * D * XILMI}
IF IFAB .GT. 68. .OR. FAC .GT. 88. .OR. FAD .GT. 86.) GO TO 230

C DIFFERENTIAL OF Y FUNCTION WiTH RESPECT TO PARAMETER A
FP(1) - {X1(Il E 4* (X(ll)*,CI * (X3ll**DlI
YCI) - A * FPM1)

C DIFFERENTIALS OF Y FUNCTION WITH RESPECT TO PARAMETERS B C, AND D
FP(2) a YCI) 0 XIL)
FPI|0 - YCII) # XZL(I)

FPI4) - YC(Il , X3LU,)
C V RESIDUALS

6C YDEV(I - Vi -I VC4I)
IF INOTE .EQ. I) GO TO 100
IF (iSCLVI .EQ. 01 GO O 70
YD ( (2.0 * YC(I)i - YfI)
IF (YD .LE. 0.1 NOTE - 1
GO TO 100

C LALCULATE H AND T MATRICES.
7C 00 90 If 1, 4

00 80 JJ 1 1, 4
H(|I,JJ) v H|iJJI * IFP(II) * FP4JJI)

80 CONTINUE
T(ilI = TIlle IYDEV(MI * FP1IiI)

9C CONTINUE
100 CONTINUE

C If A SOLUIJON HAS SEEN OBTAINED 41SOLVE I )I, STOP ITERATION AMD
C RETURN.

IF (I1SOLVI .EQ. t) RETURN
C SOLVE FOR LORRECTIONS TO PREVIOUS SOLUTIONS.

CALL SOLVt
IF (IERR ,EQ. I) kRTURN
CA - AH

DC - CH
CD - OH

C FIND WHICH FRACTIONAL PART OF CORRECTION TERMS, WOEN ADDED TO
C PARAMETER VALUES, GIVES LOWEST SUM OF SQUAREb OF Y RESDUALS.
C

rEmP z 1.0
11C TEMP * 0.1 * TEMP

CO 120 J It It
F1 - TEMP * FLOATMJ - i)
ATEMP(JI wA * IDA * FI)
&8TIMP4J) 0 B * (D8 O Fit
CTEMPIJ, C + 4DC F It
0IENP(j) , + (00 * FI)
QJ) a C.

10 CONTINUE
GO6 160 J t , 1l
00 150 1 1, N
IF (IEQ .EQ. 5) GO ,O 130
YIMPs ATEMP(J1tXI( i )**BT&MP(J) 1*12(11 I**CTEMPIJ) I*

C X3(I)$#DTENPEJI)
GO TO 140



130 YTEMP EXPIATEMPIJ) (8TEMP(J) X IM?)))
140 YDIF a Y(lI YTEMP

Q0J) , 0J) + (YDIF * YOIF)
15C COf TINUE
160 CO T1NUE

Y'DIVS. 2 Qdi)

Do 110 J * 2, 11
IF (VDEVSQ .LE. Q(J)) GO TO 170
04a J
YDIVSQ a G(J)

170 CONTINUE
IF (LM .GT. 1) GO TO 100
IF IAB$SfDA*1.O*TEMP) JGT. I.OE-06) GO TO lO
IF (ABS!OS*1O.O*TEMP) JGT. 1.OE-08) GO TO 110
IF .:ASIDO#IO.tTEMP) JGT, 1.OE-08) GO TO 110
IF EASS(Dl*IO.O*TEMP) .JGT. t.OE-08) GO TO 110

180 ODA - ABSA - ATEMPILM))
0DB - 48SS - BTEMP(LMJ)
DeC a ABSIC - CIEMPILMO)
0OD w ABSI - DTEMPULMI)

C UPIATE THE VALUE OF :ACH PARAMETER.
A v ATEMPILM)
8 v OTEMPILM)
C v CTEMPWLA)
0 v OTEMPILM)

C IF A SOiUlION IS OBTAIwhD, SET SOLUTION DESIGNATOR9 ISOLVE. TO I.
C I& SOLUTION IS ASSUMED WHEN THE CHANGE IN THE VALUE OF EACH
L PsQAMETER FROM ONE fTIRATION TO THE NEXT BECOMES EQUAL TO OR
C kISS THAN, 10**(-I)lj
10 IF IDDA .6T. 1.OE-68) GO TO 200

IF (ODB .6T. I.OE-9IB) GO TO 200
IF (DDC .GT. 1.OE-08) GO TO 200
IF (DD .LE. t4OE-08) ISOLVE v 1

200 CONTINUE
C

C ERROR MESSAGES
C

210 WRITE 16, Z20) AI, 81
220 FORMAT IlOl/ lOX, 94HNO SOLUTION HAS BEEN OBTAINED FOR THIS

C RUN AFTER 50 ITERATIONS. THIS RUN HAS BEEN TERMINATED. ///
C IOXt 21HLOGARIT"HIC SOLUTIONS / lOX, SH A - p F14e / IOXv
C SM 8 a , F14.5 )
IF (NIV .EQ. 21 WRITE 16, 322) Cl

222 FORMAT IN v X, SH C % 9 F4eS)
IF M,4!V .IQ. 3) WRITE 16, 224) C1, D

224 FORMAT I101 , 9X, 5H C q • F14.5 / lOX, SH 0 a , Ft*'4)
GO TO 250

230 WRITE (6, 140) A, 8, C. 0
240 FIRMAT |IMCt/ lOX, 66HOVEMFLOS EXIST IN SUBROUTINE ITVLR.

C THIS RUN MAS BEEN TERMINATED* !11 lOX9 4HA a , F14.5 I IOX,
C 4H9 a , F14.5)
IF NIV .Q. 2) WRITE 16, 142) C

242 FORMAT (t , 9X, 4HC a f F14.5)
IF INiV IQ0. 31 WRITE 16, 244) Co D

244 FORMAt (IN t 9%, 4HC v f F14.5 / loX, 4H) - , F14.5)
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25C IcIR I

L NO
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IIBFTC ST~i
SUBROUTINE SiAT
COMMON A, Alf) 09 B1, C, Cl, Do DI, AN, 81, C4., 014, A4, A141,

C A42, DF1, OF?, OFT, FVALUE, CD? CV, R, PDEVM, SEY,
6 XV, YJ, YDEVSQ, EA
COMMON IA, IDISK IFRR, IFV9 [SOLVE, ISCIv N, NIVt 4OTE, 4P
COMMON H(4#4)9 Tilt), SDEV(4), VMEA4(4), S()03, V(20196Ji
c PDE'I4200)v XILIZOO), X2LI2OO)t X3L(203 YLIZOO),
C YC120019 YDEV(2001
CONMN ISC1419 JX46)v FMT(1IB, fItLE(161, 14D9 IPAGE, [E~v

C (ORD,, SID# NRUN
DIMENSION IDI(2011, [02(2013, Y(2011# XL(201)9 XZ(201)9
C AM(?0l1 Fill
EQUIVALENCE (F~l), Al, ([Dtlli, V(Loi3), ([02(13, V(tv?Di,

c. (X311)v V1I.61)t IJXII), it$, (JX121, J2)9
c (JX( J, I J3) v (JE' IP J4),9 (JX( 5), J5),9 (JX( &It J6)

C SUBROUTINE FOR CALICULATING STATISTICS
C

10 YDEVSQ 0.
00 20 1 Itj N

C, PERCENT Y DEVIATIONS

C SUM OF ABSOLUTE PERCENT Y DEVIATIONS
POEVM - PDEVM * ABSIPDEV(I))

C SUM OF SQUARES OF Y RESIDUALS
YDEVSQ a YOEVSQ + IYDEVIII * YDEVII))

c SUM OF COMPUTED Y VALUES
S(251 - S1251 + YC(I)

10 CONTINUE
c MEAN OF COMPUTED Y VALJES

YCMEAN - S(25)/AN
c SUM OF SQUARES OF COMPUTED Y VALUES ABOUT 1-IEIR MEAN

DO 30 I a 1 N
S126) a S(26) + (!Y6'(l) - YCMEAN)**2)

30 CONTINUE
c TOTAL DEGREES OF FRtEEDOM

OFT - AP4I
C DEGREES OF FREEDOM ABOUT' REGRESSION CURVE

DF I a 4 - NP
c DEGREES OF FREEDOM DUE TO RE;RESSION

0F2 aOFT - DEL
c F VALUE

1FV a 0
DEMON vYOEVSQ/UF[
IF IDENOM .NE. 0. .AND. OF2 N.ME 0.) GD 1113 '

*F I
GO TO 50

40 ANUM a S426)/DF2
FVALUE a ANUM/OE'40M
IF (FVALUE .GF. I.-.L)8) 1EV -

C MEAN OF ABSOLUTE PER'CtNV Y DEVIATIONS
50 PDEVM a PDEVM/A4

C sTANlAAD[ ER40q OF T4Q F)4~J ~(~J~tt % SAMD~L1- SIIH
'I Sy T (YDE V /')F I
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C COkfFICIENT OF VARIATION PERCENT
CV a 100. * SEY)/VMEAN(I)

C COEFFICIENT OF DETERMINATION (UNADJUSTED FOR SAMPLE SIZE)
GOD i.0 - (YOEVSQ/S(21))

C COEFFICIENT O'c CORRELATION IUNAUJUSTED) FOR SAMPLE SIZE)
R a SQRT(CD
RETURN
END
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*ISFTC 0Ui
SU BROUTI N4E OUT A
COMMON A, .', 8, L, CI, t , D1+ AN, SN, .N, ON, A 49 A'vL,

C Av, OFI OF2 OFT, FVALUI CD, CV, R, PDEV4, SEY,
C %V, VV, YOEVSQ, EA
COMMON JIA IOISK, IFJA, IFV9 ISOLYE, ISCI, 49 4dIVT MOTE9 NP
COMMON H(494)9 T(4)t SOEV44it VRIANI4I S130o V12OI.6)9

POEVIZOO), RIL(ZO0), 9Z264O0), X3LI200) YL(200),
C YC(200), YDZ.V1o0G)
cOmMOn ISC(i), JX461, F fI), vtITLI(161, 1409 IPAGE, IEQv

C 1OO, NID, "RUN
DIMENSION ID11201), 1oll201), Y(ZOI), 41(201). XZIZ)31.

C X32O1), FIle
EQUIVALENC. (F4Il, A), (101(l), V(1,119 (1i2O1(1 VII,21,

L (Y(il, Vli,3) (Xiii), V1I,|4), IXVl) V(la5Ii,
C IX31), Vi,)19 0Jll, J), IJX12), J2),
C IJX(3). J3)v (JE(41, J4) IJX|Sl, M, IJX61), J&)

C
C SUBROUTINE FOR PRINTIN)G SUIRARY TABLE
C

10 WRITE [be 201
20 FORMAT (IHO/ 39Xt I)HSUMARV TABLE !/)

NPI a V * IA
IF (IA .EQ. 1 WRITE 46, 251

2S FORMAT IIH * MeK, 1O&NNOTE -- THE STATISrICS CALCJLATEO FOR tHIS
C RUN ARE NOT C04PARAL.E WITH THOSE FOR UNSPECIFIED Y-INWERCEPTS.
c. /f/ )

30 WRITE (6, 401 A, 6
40 FORMAT 41H f

C 3OX, 41iHA q IOX, Fl*.$ /
C 30X, 41NS , , FI'. I
GO TO (90, 90, 50, 70, NPI

50 WRITE 16. 60 C
60 FORMAT (it

C 29x, 41HC F 10), P14.05
IF (IE .EQ. 1) WRITE 16, 65) XV, YV

65 FORMAT (IN /
C )OX 4IHX COORDO4ATF OF VERTEX POINT I Iog, F14.S /
C 30X, 41HY COORDINATE OF VERTEX POINT , 10X F14.5 I
GO TO 90

0 WRITE (6, 80) C, )
80 FORMAT (IH

C MeK, 41KN , 101, t4. M /
C 30X, 41HO t O, F14.5 l

90 IF 4lE .ME. 3 .ANO. lEQ .NE. S) GO to 190
WRITE (6, 100)

100 FORMAT (IN / 30X, ZILOGARIFHMIC SOLUTIONS I
WRITE (69 1101 Al, 81

Io FORMAT (IN 9
C 29X, 41H A * 10 F14.5 1
C 30X# 41H 8 IOX, F14.5 I
GO TO (160, I4O 130, 140), NPI

120 WRITE (4e 130) CI
130 FORMAT l IIH

C 29X# 41H C 1 14, 4
GO TO 160



HIi

140 WRITE (6, 150) CL, DI

150 FORMAT (IH ,

C ?9, 41H C , IX, F14.5 /
C 30X* 4LH P , 1K, F14.5

160 IF (lEo .EJ. 5) WRITE (6, 110) EA

170 FORM4AT I [H /
O 30X, 41HY INTERCEPT , IOX, F14.5

190 WRITE (6, 200) R, CD, SEY, CV, YL)EVSQ, OL)EV'4

200 FORMAT ( IH /
C 3OX, 4IHCOEFFICIEF4 OF CORRELATION (U4ADJU0TEO) , IOX , F14.5 /
1 3lOX, 4,COEFFI|'IEIT OF DETERMINATION 4UNADJJTED), IOX, F14.5 /
C 30Xv 46HSTANOARO ERROR OF THE ESTIMATE 3F r ( .UJUSTE:), 5X,

L, F 14 .5 /
C 30X# 4IHOOEFFICIE4T OF VARIATION (PERCE4T) 13X, FL4.5 /
C 3.3X, 41tHSUM OF SQUA(ES OF Y RESIDUALS , LOX, F,14.5 /

L 30X, tHIMEAS OF ABSOLUTE PEICENT Y DEVIATIJNS , 13K, F14.5
:F (IFV .EQ. 0) wRITt (6, 210) FVALUE

2i0 FORMAT ( H /
30X, 41HF VALUE , IX, F14.5

IF IFV .EO. 1) w-tlIt ( , 2201
220 FORMAT (IH I

C 30X, 4IHF VALUE , 16X,
C 1OhE JAL TO OR ;REaT1FA THAN lt**P I
wR ITE (6, -30 DF, 19F2 , OFT1

230 VJRMAT (IH ,
L ?9X, 4 ' :EES OF FREEDOM ABOUT REC.RESSi34 CJRVE, ION., F14.5 /
C lOX, 41HIvt;REES OF FREEDOM DUE 10 R1-RESSIJN , lOX, F14.5 I

30A, 41HTOTAL OFPREES OF FREEOOM , LOX, F14.5
wRITF (6, 2351

235 F3RMAT (IH 30X, I9HMEANS OF INPUT JATA
WRITE (6, 2401 VMEANII), VMEAN(2)

240 fJRM!T (IN
? 29X, 41H Y , IOX, FI.I.S /

C #X, 4 V: XI , 13K, F14. )

vo i0 (?40, 205, 270, NIV
250 wAITE (6, 260) VMFAN(3)
260 FORMAT ( IP ,

i 29X, 41i X2 , 13Y, F14.5
60 In 790

-10 WRITE (6, 2801 .jMEAN(3), VMEA4(4)
-? 0 FORMAT (IH

C 29X, 41H x2 , LOX, F14.5 /

C 3OX, 41H Xl , LOX, F14.5 I
90( wk It 16, 29')

295 iOk(MAT (IN / 3OX, 13HSTANOAD DEVIATI94S JF INPJf ,AIA)

wRITE (6, 300) SUEV(I), SDEV(2)
4O FORMAT ( I4 ,

. 29X, 4 1 H , IOX, F14.5

C OX, 41IH XL , ID, F14.5
1 UfC1 (3ISO, 310, I10), NIV

110 vRITt (6, 320) SOLV( 1)
1/ 0 i)RHAT ( IH ,

, 29x, 4.Ixii x , ION, F14.5 I
.,(I TI P350

r' w TE (W4 340 t1(, 01 V
14() FORMAT (I I ,



C 29Y 1 %2
C3Ox, 41H- X3 

IDX, F14.5350 WRITE 16. 360) AN
360 FDRMPAT (1t1 /

C30E, 41H4UMBER (IF DATA PQIws 
XF1.

RH URN 

E F1. )k No



$I8FTC OUT2
SUBROUTINE COT?
COMMON A# Alt 8, tit, L, C!, 0, 01, AM, BH, CM, OH, AN, ANI,
C AN2, DFI, OF2, OFT, FVALUE, CO, CV.- R, F'0EVM4, SEY,

XV, YV# YOEVSQ, EA
COMMON IA, 1015K, IFRR, iFV, ISOLV:, ISCIp N, NIVv NOTE, NP
COM MON H14,4), T(4), SDEVI'.), VMEAN('i, S(30), V120196),

C PUEV(200), XIL(?OO), X21-(200), X3I(200), YL(200),
C KIMC), YGEV(200)

LOMMON ISLi'.), ,JX16)t FMU1P), TVLE(16), IND, IPAGE, 1EQ,
C ICkC, NIll, NRUN

UIMENSICIN 1011201 ), 102(2CI) , VI 201)o XI 4201)t X21201),
C 1X3(2C I) t F I)

EWUUIALENCE l(Ii)s A), (I0141)t Vi 1,l)), (10241), Yt 1,2)),
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C SUSROUTINE FUR PIINTINu, INPLT OATA, CAL CULATED Y VALUES,
%C Y RCSIflUALS, AND PERCENT Y DEVIATIONS
C
C PRINT TITLE OIN NEW PAGE

IC WRITE It, ZC' (TITLEWI, I = It 16), [PAGE
2C FORMAT (1141/ 10%, 16A4t 41Xt 5HPAGE , 1?2

C STEP PAGE Nkjm8Ek BY
IPAGE x:iPA~f + I

C SET LINE COUNT Tr" ZERO.
L I NFS a0

WR ITE (6, 30t
3C FORMAT (1t4' 49X, 11HCCMPUTFD) Y VALUES AND RESIDUALS

GO TC 14C, luC, 140), NIV

15C U-OR 0A T I ItU/ I U14, 7 t iP i R tN T / 14 X q 'H L A H k-L I I X 1 IY , 17 x, Z H x ,
I X t HY C A LC. X3, ?6 1-Y D EV, 13 X)
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11? fI CAT I I I/'S.C
IF fL INES .1 T. 40l) SS I

IPACIE IPACA * I
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wR ITE b6, 'L
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F12 - FLCATI)/5.0
IF ILINES .LT. 4,0) GO TO 115
wRITE 16, 20) (TITLF(K), K - It 16), IPAGE
(PAGE m IPAGE 4i
i V' .+ (6, 80)
WATE (6, 110)
L.NES m 6

115 WRITE 16, 120) (V[IK), K a 1, 5), YCI), YOEVII), POEV( )

120 FORMAT IIH , 9X, z.'4, 613X. F14.5) }

LINES s LINES * I
IF iFlI .EQ. t/) WRIT- (6, 70)

130 CONIINUE
GO TO L8O

14C WR ITE (6, 150)

150 FORMAT ( IH0/ 121X, ?HPERCENT / 2X, ';HLABEL, 1SX, 1vY, Isx, 2HXI,
L 15X, 2HX2, SX, 2HX3, 13X, THY CALC., fIX, 6HY LV., I1X
C 6HY O V. /
CO !T I 1 , N

F1Z a FLOAT(I1/5i.0
IF (LINES .Lt. 40) GO TO 155
WRITE (6, 20) (TITLEEK), K a 1, IPAGE
iPAGE - iPAGE + i

WRIlIE (6# 80)
WRITE (6, 1S0)

LINES - 0
155 Wki TE i bo 160) (i 1 I 9 I( 9 t 6), YC(I), YD V(IIl, POEVII)

16CJ FORMlAT I IH o IX, 2A4, T|3X, FI 4. I 5 )
LINES a L INfS + I
IF IF(I .EQ. Ft2) WRITE 16, 701

170 CONTINUE

Ile IF (NOTE ,EQ. 1) wRITE (6, 190)
190 FORMAT iIHO/, LOX, 1O9HTHE ABOVE SULUTION FOR THIS CASE DOES NOT

GIVE AN ABSOLUTE MINIMIAT ION OF THE 3UN OF SQUARES OF Y RESIDUAL

RE TURN
LNO
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